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ABSTRACT 

During the past decade researchers have been considering vector sensors for 

use in linear towed arrays for passive target detection.  Linear processing is often 

used due to its simplicity and significant directivity improvements.  Nonlinear 

processing holds the potential for further directivity improvements; however, it 

also presents the risk of amplifying uncorrelated noise.  

This thesis simulated a correlated signal in uncorrelated noise to 

investigate the potential of a nonlinear (but non-adaptive) processing technique.  

It demonstrates that the increased directivity and substantially diminished 

response from the ambiguous direction is quite beneficial when the signal is 

located within certain quadrants.  It also demonstrates that linear processing is 

more effective than this nonlinear processor near endfire.  In all cases, the signal 

to noise ratio was high enough to be detectable by basic array gain from multiple 

sensors. 

Monte Carlo simulations were completed to generate detection statistics 

and ROC curves were created to illustrate the relative effectiveness of pressure-

only sensor arrays, linearly processed vector sensor arrays, and nonlinearly 

processed vector sensor arrays.  For a broadside signal in uncorrelated noise, 

simulations indicate an array with eleven vector sensors can achieve a 3 dB 

improvement if the nonlinear processing defined in this thesis is utilized instead 

of linear processing. 
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I. INTRODUCTION 

A. BACKGROUND 

Research and development of sensor arrays towed behind ships for 

passive submarine detection began as early as World War I (Urick, 1983) as a 

means to overcome the U-boat threat.  After the war, the development of the 

“eel,” an array of 12 pressure sensors, was documented (Hayes, 1920).  This 

system contains many of the characteristics of a modern “towed array” system.  

In the current decade, researchers have considered the use of vector sensors1 to 

measure both pressure and particle velocity at the array.  These systems provide 

improved directivity (Cray & Nuttall, 2001) resulting in diminished target 

ambiguity. 

B. RESEARCH MOTIVATION 

Recent efforts have suggested the use of unconventional nonlinear 

processing techniques (Cox & Zeskind, 1992; Smith & Leijen, 2007) to foster 

further improvements in array directivity.  The benefits of increased directivity are 

clear; however, it was not clear if the proposed nonlinear processing would lead 

to amplification of uncorrelated noise.  The effort described in this thesis 

addresses this uncertainty by simulating both the signal and noise while 

providing graphics to show how the processing techniques compare. 

C. RESEARCH SUMMARY 

A correlated signal in uncorrelated noise is simulated and Receiver 

Operating Characteristic (ROC) Curves are plotted to demonstrate the 

classification effectiveness of various processing techniques.  These techniques 

include conventional linear processing of pressure-only arrays, linear cardioid 

processing of vector sensor arrays, and a new nonlinear (but non-adaptive) 

technique for processing of vector sensor arrays.  The results show the new 

                                            
1 Vector sensors include a pressure element and three orthogonal acceleration elements. 
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nonlinear processing technique provides improved detection performance over 

the conventional linear processing techniques provided the signal is located 

within the broadside quadrant. It should be noted, however, that this thesis only 

considered signals that had large enough signal-to-noise to be detectable by 

basic array gain due to multiple sensors.  The issue of detection of much lower 

signals is not addressed. 
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II.  THEORY 

A. ACOUSTICS AND SIGNAL PROCESSING 

1. Coordinate System 

This thesis uses the rectangular coordinate system shown in Figure 1.  

Linear arrays discussed here will be oriented along the x-axis as shown.  The 

orientation of incoming planar waves to this array will be defined using the angles 

θ  and φ .  Steering angles will be defined using similar angles sθ  and sφ .  As 

shown in the figure, angles θ  and sθ  represent roll angles and the angles φ and 

sφ  rotate around an axis perpendicular to the roll direction.  For simplicity, this 

thesis considers roll angles θ  and sθ  equal to zero.  Consequently, the angles φ  
and sφ  are positive rotations around the z-axis.  The angles φ  and Sφ  may also 

be referred to as the bearing angle and the steering angle, respectively. 

 

 

Figure 1 Coordinate System for This Thesis 
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2. Sound Transmission in Water 

Sound travels through water in longitudinal waves.  These waves include 

local compressions and rarefactions of the water that can travel for long 

distances.  Once these waves contact a receiver, such as a hydrophone, the 

pressure fluctuations will cause the receiver to vibrate resulting in measured 

sound signal at the receiver.   

Plane wave propagation in homogeneous isotropic fluids is given by 

(Kinsler et al., 1976) 

 ( )( , , , ) i t k rp x y z t Ae ω− −= i , (1) 

where 

( , , , )p x y z t  = acoustic pressure, 
A amplitude= , 

ω = angular frequency 2 fπ= , 

k =propagation wavenumber vector x y zk i k j k k= + + (with magnitude / cω ), 

r =position vector xi y j zk= + +  (from the origin of the coordinate system), and 
ˆ ˆ ˆ, ,i j k = unit vectors in the x,y,z directions, respectively. 

This thesis will focus on the spatial processing provided by linear arrays 

and not temporal processing techniques.  Consequently, this equation is 

simplified to 

 ( )( , , ) i k rp x y z Ae= i . (2) 

3. Particle Velocity 

For a plane wave, particle velocity is related to pressure by  

 pv
Z

=  (3) 
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where 

Z cρ= ±
 

and  
ρ = density of the undersea medium, 

c = speed of sound in the undersea medium, 
Z = characteristic impedance of the undersea medium, and 
the sign ( )±  is determined by the direction of propagation. 

Consequently, the pressure is directly proportional to the velocity scaled by an 

amount equal to the characteristic impedance. 

Particle velocity is typically obtained indirectly using accelerometers.  

Considering a broadside (y-direction) planar wave, particle velocity and the 

acceleration measured are related by 

 ∂
=

∂
y

y

v
a

t
 (4) 

where 

ya =  acceleration measured in the y-direction. 

For a wave with a single frequency,ω , this reduces to a phase shift, since 

 2.y y y i
y y y

v a a
a i v v i e

t
πω

ω ω
∂

= = − ⇒ = =
∂

 (5) 

4. Vector Sensor 

A vector sensor is a hydrophone that includes a pressure element and a 

tri-axial accelerometer collocated at a single point (Cray, 2002; Cray & Evora, 

2004).  The pressure element will produce an omni-directional response as 

shown in Figure 2.  An accelerometer element facing toward 90° will produce a 

response as shown in Figure 3.  Integration of the measured response as 

described by the previous equation will also result in the same pattern. 
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Figure 2 Polar Plot of Omni-directional Hydrophone 

 

Figure 3 Dipole Pattern from Accelerometer Oriented toward 90° 
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It is possible to combine the responses of the previous two figures to 

obtain the pattern shown in Figure 4.  Traditionally this pattern has been called 

the “cardioid” pattern since it is similar to a heart shape.  As shown, it 

preferentially detects sound from 90° while rejecting sound from 270°.  This is 

advantageous for determining the location of a signal.  

 

Figure 4 Cardioid Beampattern from Omni-directional and Dipole 

The pattern shown in the previous figure can be obtained by the simple 

sum of a single pressure element and the response of a single acceleration 

element (converted to velocity) oriented toward the 90° direction.  This 

configuration, however, limits the orientation of the cardioid to the direction 

shown.  This is why vector sensors typically incorporate three perpendicular axial 

accelerometers in addition to the pressure element.  The linear summation of all 

of these elements can create a three-dimensional cardioid response that can be 

steered to obtain the maximum response in any direction. 
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5. Linear Arrays 

Sensors are often arranged in arrays to improve signal detection.  This 

thesis will consider linear arrays.  A typical arrangement involving pressure 

sensors is shown in Figure 5.  A similar arrangement can also be created using 

vector sensors. 

 

Figure 5 Typical Linear Array Arrangement 

A linear array will amplify responses from a particular direction thereby 

favoring a signal in that direction over noise that comes from all directions.  This 

preferential treatment of the correlated signal over uncorrelated noise is the basis 

for effective array processing.  This paper will concentrate on linear arrays that 

are commonly towed behind ships for passive detection of submarines.  The 

focus will be on the spatial processing provided by the arrays and not any 

temporal processing techniques. 

Array gain ( AG ) is defined by (Urick, 1983) 

 ( / )
10log

( / )
array

element

S N
AG

S N
=  (6) 

where 

( / )arrayS N =  Signal Power to Noise Power Ratio for the Array, and 

( / )elementS N = Signal Power to Noise Power Ratio for One Sensor. 
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The numerator typically will be larger than the denominator since the array will 

amplify the response in a given direction while diminishing responses from other 

directions.  This arrangement favors the signal since it has a single location while 

noise originates from all directions. 

6. Beamforming 

Beamforming is commonly used with sensor arrays to amplify sound from 

a particular direction, while diminishing sound from other directions.  The 

technique is achieved by summing the response from each sensor.  The listening 

direction can be chosen by adjusting the timing delay or phase shift between the 

individual sensors. 

a. Pressure-Only Sensor Array 

Figure 5 illustrates the basic pressure array arrangement.  Each 

pressure sensor has an omni-directional response as shown in Figure 2; 

however, if an array of eleven pressure sensors are oriented along the 0–180° 

and summed the response to a broadside signal is shown in Figure 6. 
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Figure 6 Two-Dimensional2 Linear Beampattern for a Pressure Sensor Array 

Due to Incoming Signal at Broadside  

Comparison of Figure 2 and Figure 6 demonstrates the value of 

arrays:  the array (Figure 6) sound from the broadside direction (90° and 270°) is 

louder than other directions, while the single pressure sensor (Figure 2) “hears” 

sound equally from all directions.  Since arrays can selectively listen, the 

direction to a signal can be established. 

 

 

 

                                            
2 Throughout this thesis, all two-dimensional polar plots have angles in degrees measured 

clockwise around the center of the array with zero representing forward endfire.  Each circle 
within the polar plot is labeled in decibels relative to the maximum response (0 dB). 
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The equation for beamforming an array of pressure-only sensors is 

  2
cos( ) ( , ) ( ) n sikxp

linear s s pn n
n

B w P e φθ φ −= ∑  (7)

where  
( ) ( , )p
linear s sB θ φ = linear beampattern for pressure sensor array, 

=pnw weighting factors, 

nP  = the pressure wave at each sensor, and 

sφ = the steering direction. 

The beampattern shown in Figure 6 is illustrated in the three-

dimensional plot shown in Figure 7.  The three-dimensional plot shows that the 

lobes are symmetric around the array axis. 

 

 

Figure 7 Three-Dimensional Linear Beampattern for a Pressure Sensor 
Array Due to Incoming Signal at Broadside 
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This symmetric behavior is common for pressure arrays regardless of the 

location of the signal.  For example, the beampattern for the same array with the 

signal located 45° aft of broadside is shown in Figure 8 and Figure 9. 

 

Figure 8 Two-Dimensional Linear Beampattern for a Pressure Sensor Array 
Due to Incoming Signal at 135° 

 

Figure 9 Three-Dimensional Linear Beampattern for a Pressure Sensor 
Array Due to Incoming Signal as 135° 
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The symmetric beampatterns of Figure 7 and Figure 9 illustrate the 

primary limitation of pressure sensor arrays.  By steering the array, it is possible 

to increase the received signal (from a target of interest) relative to ambient noise.  

When the signal to noise is maximized, we can speculate that the direction to the 

target is likely located in one of the largest lobes (see Figure 7 and Figure 9); 

however, without additional information, we do not know in which of the 

ambiguous directions the target is located.  Location ambiguity is common in 

passive sonar and Figure 10 illustrates what has been called the cone of 

ambiguity.  For passive detection of a signal using only a pressure sensor array, 

we would anticipate only determining that the signal is somewhere on the cone of 

ambiguity.  Additional information is not available without maneuvering the array 

or adding additional sensors. 

 

 

Figure 10 Cone of Ambiguity for a Typical Towed Array 

Sometimes the ambiguity described above is considered in a two-dimensional 

sense and may, therefore, be referred to as left/right ambiguity.     
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b. Vector Sensor Array—Linear Processing    

Beamforming can be accomplished for an array of vector sensors 

by using a process similar to the one described in the previous section.  The 

linear processor is typically defined by the following equations (Smith & Leijen, 

2007). 

2
cos( ) ( )( , ) n sikxpv pv

linear s s n
n

B b e φθ φ −= ∑  (8)

where 
( ) ( , )pv
linear s sB θ φ = linear beampattern for vector sensor array, 

( )( , ) ( ),pv
n s s xn xn yn yn zn zn pn pn

n
b w v w v w v w vθ φ = + + +∑  

, , ,xn yn zn pnw w w w  are weighting factors, 

, , , ,n n n nik r ik r ik r ik r
xn xn yn yn zn zn pn pnv V e v V e v V e v V e= = = =i i i i  

=k the wave vector for the propagating wave, 

nr = sensor position index, and 

cos , cos sin , sin sin , n
xn n yn n zn n pn

PV V V V V V V
c

φ θ φ θ φ
ρ

= = = = .  

Typical weighting factors are: 

cosxn n sw w φ= , θ φ= cos sinyn n s sw w , θ φ= sin sinzn n s sw w , =pn nw w . 
where 

θ φ =, the roll and bearing steering angless s . 

Note that the variable pnV  contains weighting to compensate for the characteristic 

impedance, cρ , of the undersea medium. 

This linear processor will be referred to as cardioid processing here 

since each sensor (consisting of a pressure element and three axial 

accelerometers) will produce a cardioid pattern (see Figure 4) when the weights 

of each component are equal.  When the cardioid from each sensor is summed 

with responses from other sensors in the array, the beampattern shown in Figure 

11 is obtained for a broadside signal. 
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Figure 11 Cardioid Beampattern for a Vector Sensor Array Due to Incoming 

Signal at Broadside 

Comparison of Figures Figure 6 and Figure 11 show the significant 

advantage of vector sensor arrays as compared to pressure sensor arrays.  

Figure 6 shows that the pressure array beampattern has a large lobe in the 

ambiguous direction (i.e., 270°).  Figure 11 shows that the vector sensor array 

does not have a lobe in the ambiguous direction (i.e., 270°) for the same case.  

Consequently, we would anticipate the ship operating a vector sensor array 

would require less maneuvering than a similar vessel operating a pressure 

sensor array. 

Although Figure 11 showed perfect rejection of sound from the 

ambiguous direction, the performance is not as good when the array is steered to 

a direction other than broadside.  For example, for an incoming signal at 135°, 

the beampattern shown in Figure 12 is obtained.  Although this pattern does not  
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provide perfect rejection of sound in the ambiguous direction, it provides a clear 

improvement (around 6 dB) over a similar case for a pressure sensor array (see 

Figure 8).   

 

Figure 12 Cardioid Beampattern for a Vector Sensor Array Due to Incoming 
Signal at 135°  

Studies have been completed comparing vector sensor arrays to 

pressure sensor arrays.  These studies used linear cardioid processing for the 

vector sensor arrays and customary linear processing for the pressure sensor 

arrays.  Results have shown that the directivity index3 can be as much as 5 dB 

higher when comparing 10 sensor linear arrays (Cray & Nuttall, 2001).  These 

results have encouraged further studies of vector sensor arrays.    

                                            
3 Directivity Index = 10 log(Directivity Factor). 
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c. Vector Sensor Array—Nonlinear Processing 

The improvement shown in Figure 12 is encouraging; however, 

additional rejection of sound in the ambiguous direction may be possible.  

Consider a beamformer described by the equation 

  2
cos( ) '( )( , ) ( , ) n sikxpv pv

dynnull s s n s s
n

B b e φθ φ θ φ −= ∑  (9)

where '( ) '( , ) ( )pv
n s s xn xn yn yn zn zn pn pnb w v w v w v w vθ φ = + + +  with special weighting. 

Note the weighting is the same as for cardioid processing for the 

velocity sensors; however, the weighting for the pressure sensor ( '
pnw ) becomes, 

nAw , where φ= −cos(2 ).sA   This new nonlinear (but not data adaptive) 

processing technique dynamically produces a null in the ambiguous direction 

(225°, Figure 13); consequently, it will be referred to as dynamic null processing 

here.  Unfortunately, this technique also produces a substantial back lobe (in the 

vicinity of 0°). 
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Figure 13 Dynamic Null Beampattern for a Vector Sensor Array Due to 
Incoming Signal at 135° 

An alternative nonlinear technique is to incorporate some of the 

benefits of both cardioid processing (Figure 12) and dynamic null processing 

(Figure 13) by combining them in the equation 

  cos cos( ) ( ) '( )( , ) ( , ) ( , )n s n sikx ikxpv pv pv
cardynull s s n s s n s s

n n
B b e b eφ φθ φ θ φ θ φ− −= ×∑ ∑  (10)

where ( )( , )pv
n s sb θ φ  has the standard weighting described in the cardioid section 

and, '( )( , )pv
n s sb θ φ  has the special weighting described in the dynamic null section. 

Since this processor combines cardioid processing with dynamic 

null processing, it will be referred to as cardynull (pronounced card-e-null) 

processing here. 
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Beampatterns for cardynull processing with signals broadside and 

at 135° are shown in Figure 14 and Figure 15.  Figure 15 illustrates the promising 

aspects of cardynull processing with a large lobe in the signal direction (135°), a 

null in the ambiguous direction (225°) and a much smaller back lobe than the 

dynamic null processing technique (compare to Figure 13). 

 

 

Figure 14 Cardynull Beampattern for a Vector Sensor Array Due to Incoming 
Signal at Broadside 
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Figure 15 Cardynull Beampattern for a Vector Sensor Array Due to an 
Incoming Signal at 135° 

B. PROBABILITY OF DETECTION 

1. Probability Density Functions 

Probability theory is often used to predict the aggregate behavior of large 

numbers of random variables.  From probability theory, the central limit theorem 

states that the sum of a large number of random variables4 will approximate a 

normal distribution.  The normal or Gaussian distribution is given by the following 

equation and is displayed in Figure 16. 

 
( ) ( )χ μ
χ

σπσ

−
= −

2

22

1
22

f e  (11) 

                                            
4 Under conditions that are quite common in practical applications. 
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Figure 16 Probability Density Function for μ σ= =20, 1 

a. Noise Alone 

The general probability density function like the one shown in 

Figure 16 can be used to characterize noise caused by the sum of a large 

number of random processes provided the independent variable ‘x’ in Figure 16 

is replaced with the pressure or velocity amplitude as shown in Figure 17. 
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Figure 17 Example of Random Noise Amplitude 

b.  Signal and Noise 

When a signal of interest (i.e., a target of interest) is added to noise 

the sum often has an amplitude similar to the noise alone as can be seen by 

comparing Figure 17 and Figure 18.  To distinguish between a signal with noise 

(S&N) and noise alone, probability density functions for both can be plotted as 

shown in Figure 19.  Even in cases where the signal and noise have similar 

amplitudes, the signal can be distinguished from the noise by spatial filtering (i.e., 

beamforming) to enhance localized sources, such as the signal of interest. 
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Figure 18 Example of S&N Amplitude 

 

Figure 19 Probability Density Functions for S&N (blue) and Noise (red) 
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c. Target Detection in Noise 

Target detection in noise is accomplished by introducing a 

threshold as shown by the black line in Figure 20.  Everything above the 

threshold (i.e., to the right of the black line) is assumed to be the desired signal 

and everything below the threshold (i.e., to the left of the black line) is assumed 

to be noise.  This obviously leads to some misclassifications since some signal 

waves with low amplitudes will be classified as noise while some noise waves 

with high amplitudes will be classified as the signal. 

 

Figure 20 Signal and Noise with Detection Threshold (black) 
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2.  Receiver Operating Characteristic (ROC) Curves 

In Figure 20, the detection threshold can be adjusted to obtain various 

detection rates for both the signal and the noise.  As the detection threshold is 

increased the probability of false detections (i.e., the false alarm probability) will 

decrease; however, also the probability of detecting the true signal will also 

decrease.  Receiver Operating Characteristic (ROC) curves were developed 

(Peterson, 1953) to illustrate the effect of changing the detection threshold for a 

given population of signal and noise.  A sample ROC curve is shown in Figure 21. 

 

 

Figure 21 Sample ROC curve (From: Urick, 1983, p. 381) 
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An important characteristic of the ROC curves is that they show the 

effectiveness of a particular detection process.  This is illustrated in Figure 22 for 

various values of detection index “d,” where ( )2

2
S N Nd

μ μ
σ

+ −
= .  As the two means 

(i.e., S Nμ +  and μN ) become separated, d increases and the ROC curve bows 

more toward the upper left of the graph.  Increased “bowing” toward this upper 

left indicates more effective classification while the straight line between the 

lower left and the upper right (i.e., between (0,0) and (1,1)) indicates ineffective 

classification. 

 

 

Figure 22 ROC curves for various values of “d” (From: Peterson, 1953) 
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III. COMPUTER PROGRAM 

A. DESCRIPTION OF COMPUTATIONS 

The main purpose of the computer code discussed in this thesis is to 

predict the effectiveness of various sensor arrays and processing techniques in 

simulated conditions.  For undersea sound, these conditions imply that both a 

signal and noise will be present.  Consequently, the effective classification of a 

signal in noise is considered and the results are displayed using Receiver 

Operating Characteristic (ROC) curves. 

1. Coordinate System  

The computer code described in this thesis uses the coordinate system 

shown in Figure 1. 

2. Generation of Pressure/Velocity Waves 

All pressure waves and velocity waves considered here are continuous 

waves (CW) with constant maximum amplitude and a random phase that 

remains consistent with ( )ω ω π− = 2i te f .  More complicated waves, such as 

frequency modulated (FM) waves were not considered.  Use of CW-only signals 

allowed each of them to be represented simply by a complex number of the form 

a + ib (where a and b are real numbers). 

The program user can specify the number of pressure waves.  This 

number is used for both the signal and noise.  For example, if the user selects 

1000 pressure waves, the signal will be represented by 1000 complex numbers.  

Likewise, the noise will also be represented by 1000 complex numbers.  The 

distribution of the maximum amplitudes is selectable by the user. 

Velocity waves are formed based on the corresponding pressure waves. 

The amplitude of the velocity wave was determined from the formula ν ρ
= ,pa

a
c
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where  

amplitudeof thevelocity wave,
amplitudeof thepressure wave,

densityof water, and
speedof sound.

p

a
a

c

ν

ρ

=

=

=
=

 

3. Arrangement of Signal and Noise Sources 

The signal is a point source, so all of the waves that make up the signal 

are collocated at a point.  For simplicity, the signal is located in the x-y plane.  

Consequently, for the analysis considered in this thesis, the signal is always 

located at a roll angle, θ , of zero.  The primary program provides an illustration of 

the location of the signal, as shown in Figure 23.  This illustration shows the 

angle of the signal from the array.  It does not accurately display the distance of 

the signal from the array.  The signal is assumed to be in the far-field of the 

sensors, and thus interacts with the array as a plane wave. 

 

Figure 23 Sample Illustration of Signal Location 
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The noise is a distributed source, so the ( )φ θ,  location of each noise 

wave is randomly selected so that the noise waves cover a three-dimensional 

sphere around the array.  An illustration of this arrangement is shown in Figure 

24. 

 

Figure 24 Sample Illustration of Noise Location 

4. Pressure Wave Amplitude Distributions 

The pressure waves may have a uniform distribution or a normal 

distribution.  For the uniform distribution, the amplitudes are assigned within a 

range (i.e., a rμ= ± ) such that all values within the range are equally probable.  

For the normal distribution, the amplitudes are assigned such that a normal or 

Gaussian distribution is obtained.  For both signal waves and noise waves, the 

phases are uniformly distributed between 0 and 2π . 
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5. Adjustments for SNR; Calculation of Measured SNR 

The user can specify the desired signal to noise ratio (SNR) in decibels 

(dB).  The amplitude of each signal wave (pressure and velocity) is then adjusted 

by multiplying by the factor ( /10)10 SNR .  

SNR is defined as (Urick, 1983) 
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1 2

2 2
1 2

( ... )
( ... )

n

n

s s sSSNR
N n n n

+ +
= =

+ +
. (12) 

This formula is used to calculate the measured SNR after all of the signal waves 

and noise waves are established.  The validity of these equations may be evident 

by considering a few cases:   

Example 1:  When SNR = 0 dB, the multiplying factor above becomes 1.  

Then the average signal wave ‘s’ is equal to the average noise wave ‘n’ and the 

SNR becomes 1, which is 0 dB.  

Example 2: When SNR = 3 dB, the multiplying factor above becomes 2 .  

Then the average signal wave power ‘ 2s ’ is twice the average noises wave 

power ‘ 2n ’ and the SNR becomes 2, which is 3 dB (from the 

equation 1010log (2) 3SNR dB= = ).  

6. Monte Carlo Computations 

A Monte Carlo simulation was used to simulate the variability of the signal 

and noise in the undersea environment.  Each simulation involved a specified 

number of signal waves and noise waves, as discussed previously, and the 

response of sensors was also simulated and summed to produce beampatterns.  

While the patterns varied considerably, the summed result was normalized and a 

predictable average beampattern resulted as described in the next section. 
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Monte Carlo simulation was very useful for producing the statistical data 

required to generate the probability of target detection and the probability of false 

alarms.  These values were used to generate ROC curves that illustrate the 

effectiveness of various processing techniques.   

7. Beamforming with Signal and Noise 

a. Pressure Sensor Array 

Figure 6 provided the response of a pressure sensor array to a 

broadside signal alone.  In undersea acoustics, however, the noise is always 

present, and responses to the more practical situations of noise alone and signal 

with noise are of interest.  Figure 25 provides the response of the same array to 

noise originating from all directions.  It was obtained by randomly distributing 

pressure waves throughout a three-dimensional space defined by the ranges 

φ = 0° to 360° and θ = -90° to 90° (see Figure 24) then normalizing and summing 

the resulting beampatterns.  The response is more uniform than the signal only 

case shown in Figure 6, but the array geometry does distort the pattern from the 

omni-directional pattern (Figure 2) of a single sensor.  The result shown in Figure 

25 is reasonable since steering toward endfire causes the primary lobe to widen 

causing a greater response from noise waves in that region. 
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Figure 25 Pressure Array Response to Noise 

When signal and noise are combined and averaged, the results 

show some similarities to the signal only (Figure 6) and noise only (Figure 25) 

plots shown above.  Figure 26 shows such a combination when the signal power 

is equal to the noise power (i.e., when SNR = 0 dB).  Array Gain is defined in the 

following equation (Urick, 1983) for a perfectly coherent signal with perfectly 

incoherent noise.  Consequently, the 10-decibel gain shown in Figure 26 agrees 

with theory. 

 AG = 10log(N) (13) 

where 

AG = Array Gain, and 
N = number of sensors in the array. 
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Figure 26 Pressure Array Response to Signal and Noise (SNR = 0 dB)  

b. Cardioid Array 

Figure 11 provided the linear cardioid response of a vector sensor 

array to a broadside signal alone.  Figure 27 provides a similar plot for both the 

signal and noise. 
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Figure 27 Cardioid Response to Signal and Noise (SNR = 0 dB) 

c.  Cardynull Array 

Figure 14 provided the nonlinear cardynull response of a vector 

sensor array to a broadside signal alone.  Figure 28 provides a similar plot for 

both the signal and noise. 
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Figure 28 Cardynull Response to Signal and Noise (SNR = 0 dB) 

8. Detection 

This section considers the detection of a signal in noise.  The technique 

used in this thesis was to classify all responses above a given threshold as a 

hypothesized positive; then, since the actual location of the signal was known, 

these positives were further classified as true positives or false positives.  This 

process was repeated for various detection thresholds.  The process can be 

visualized by referring to Figure 26, Figure 27, and Figure 28; however, these 

figures actually are the averaged responses for each processing technique.  To 

obtain the detection probability data required, this process was executed for each 

Monte Carlo run.  For each case, the hypothesized positive was classified as a 

true positive if it was located within a small tolerance (e.g., ± 5° or ± 15°) of the 

known location of the signal.  
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a  Pressure-Only Arrays—Accommodation for Ambiguity 

As discussed earlier, pressure-only sensor arrays provide a 

symmetric response around the array axis that results in a signal cone of 

ambiguity.  This can be observed in Figure 26.  As a consequence, a classifier 

that considers only hypothetical positives in the vicinity of the signal to be true 

positives will always have false positives resulting from the ambiguous direction.  

Since the positives that result from the ambiguous direction are produced 

specifically from the signal strength, it is necessary to consider these as true 

positives to create appropriate detection statistics.  Consequently, for pressure-

only sensor arrays, if the response was classified as a hypothetical positive (by 

exceeding the specified detection threshold); it was classified as a true positive if 

it was located either within a small tolerance of the signal location or within a 

small tolerance of the ambiguous direction. 

b. Cardioid Array 

The cardioid array presented the simplest detection situation.  After 

the pressure and particle velocity components for each sensor were linearly 

combined these responses were summed with the other sensors in the array.  

Hypothetical positives were established for each response above the specified 

detection threshold.  Finally, the true positives were simply classified as those 

hypothetical positives within a small tolerance of the signal direction. 

c. Cardynull Array—Accommodation for Nonlinearity 

The cardynull array uses the same vector sensors as the cardioid 

array described above.  Consequently, processing is similar.  However, due to 

the nonlinear aspect of this processing technique, the maximum response does 

not always coincide with the signal location.  For example, Figure 29 shows the 

beampattern for a vector sensor array with the cardynull processing when the 

signal is located at 170°.  In this case, the maximum response is at 159°. 
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Due to the difference between the signal location and the maximum 

response, a short program was written to calculate the expected location of the 

maximum response for arrays of various lengths and signal locations.  This 

program produced a table that provides the expected maximum response as a 

function of array length and signal location for arrays between 2–150 sensors 

and for sensor locations between 10°–170° and between 190°–350°.  Values at 

endfire (171°–189° and 351°–9°) were not calculated since cardynull processing 

becomes impractical when the signal and ambiguous directions become aligned. 

 

 

Figure 29 Cardynull Beampattern for Signal-Only when Near Endfire 

9. ROC Curve Generation 

A final important step in the process was the generation of the Receiver 

Operating Characteristic (ROC) curves.  For each Monte Carlo run, it was 
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determined if at least one true positive existed or if at least one false positive 

existed.  If these conditions were satisfied, the summation of true positives or 

true negatives was increased by one.  When all of the Monte Carlo runs were 

completed, these summations were divided by the total number of Monte Carlo 

runs.  The process was repeated for various detection thresholds and for each of 

the processing techniques under consideration (i.e., pressure, cardioids, and 

cardynull).  The results included paired lists of true positive rates and false 

positive rates for each processing technique as established by the series of 

detection levels.  When each paired list of true positive rate versus false positive 

is plotted, ROC curves, such as Figure 30 are obtained. 

 

Figure 30 ROC curves for 11 Sensor Arrays with Signal Broadside5 

                                            
5 All ROC curves between broadside and 45° from broadside use a detection angle of ± 5°. 
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B. PROGRAM ORGANIZATION 

Computer programs and supporting functions were created using 

MATLAB® (Release, 2010b).6  Table 1 provides the hierarchy of the primary 

program, ROCmaker2, and the supporting functions.  ROCmaker2, is listed in 

Appendix A.  The supporting functions are divided into levels based on how they 

are called.  Functions called directly by ROCmaker2 are labeled as Level 1 

functions below and included in Appendix B.  Some Level 1 functions call other 

functions that are labeled as Level 2 and included in Appendix C.  Some Level 2 

functions in turn call Level 3 functions that are included in Appendix D. 

                                            
6 MATLAB® is a registered product of Mathworks®, Natick, Massachusetts. 
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Table 1 Program Hierarchy 

Main  Level 1  Level 2  Level 3 
ROCmaker2         
   makeMatrix_n2       
   arraySensorLocation1       
   showArrayArrangement1      
   showSignalLoation2       
   showArrayArrangement2      
   showNoiseLocation3       
   beamPatternFunction5       
      generatePressAmpPhs2    
      generateVelAmpPhs2    
      calculateWavenumber1    
      beamSteer5    
         calculateWavenumberSteering4
         defineWeightingFactorsPress1 
         defineWeightingFactors3 
         calculateA 
         combineSensors1 
   plotBeampatterns4       
      plotScaling5    
      polar6    
      signalExpectation3    
         equation2131e 
         cardioidBeamPatt2 
         cardynullBeamPatt2 
      noiseExpectation1    
         equation2131e 
      rateCalc2    
         aboveTheshold2 
         edgeDetect3 
         detectRegion1 
         slopeDetermine1 
         locationMax2 
         sonarBlip4 
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1. Main Program 

The main program “ROCmaker2” is listed in Appendix A.  The primary 

purpose of the main program is to allow for user input data and to organize the 

inputs and outputs to each of the Level 1 functions.  Critical acoustics 

calculations are not included in this main program; instead, they are allocated to 

supporting functions. 

Important inputs to “ROCmaker2” include the desired signal to noise 

ratios, the number of sensors in the array and the location of the signal.  As a 

minimum, the program will output a ROC curve for each specified SNR with a 

curve for each sensor processing technique (see Figure 30).  The program also 

can display average beampatterns for each processing technique (see Figure 26, 

Figure 27, and Figure 28) and other preliminary data that will be discussed in the 

function sections below. 

2. Functions 

The functions are divided into levels as discussed above and listed in 

Appendices B, C, and D.  The purpose of each function is discussed below. 

a. Level 1 

makeMatrix_n2:  Creates a one-dimensional matrix with a length 

equal to the number of sensors in the array (i.e., <nx1>).  The number of sensors 

can be either even or odd.  The function output provides the distance of each 

sensor from the origin in increments of / 2λ . 

arraySensorLocation1:  Using the output of “makeMatrix_n2,” this 

function specifies the location of each sensor in three-dimensional space (x,y,z).  

All arrays in this thesis are linear and located along the x-axis; therefore, the y 

and z positions for each sensor is zero.  Since the wavelength ( )λ  is provided in 

millimeters, the x location of each sensor is also provided in millimeters. 
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showArrayArrangement1:  Provides a two-dimensional display of 

the sensor array. 

showSignalLocation2:  Adds the signal location to the two-

dimensional display. 

showArrayArrangement2:  Provides a three-dimensional display of 

the sensor array. 

showNoiseLocation3:  Adds the location of the noise sources to the 

three-dimensional display. 

beamPatternFunction5:  Creates and displays beampatterns for 

various processing techniques (i.e., pressure, cardioid, and cardynull). 

plotBeampatterns4:  Displays beampatterns for various processing 

techniques including signal only, noise only, and combined signal and noise. 

rateCalc2:  Calculates true positive and false positive rates for use 

in ROC curves.  This function can provide limited optional displays of the 

locations of true positives and false positives. 

b. Level 2 

generatePressAmpPhs2:  Creates the pressure wave amplitudes 

and phases.  The user may specify that the pressure amplitudes are a uniform 

distribution or a normal distribution.  If a uniform distribution is selected, each 

amplitude value between a maximum and a minimum are equally probable.  If a 

normal distribution is selected the amplitudes will form a normal or Gaussian 

distribution.  The phase for each pressure wave is a uniform distributed random 

number. 
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generateVelAmpPhs2:  Creates the velocity wave amplitudes and 

phases consistent with the pressure waves. The velocity amplitude of each wave 

is determined by taking the pressure wave amplitude and dividing by density ( )ρ  

and the speed of sound (c).  The phase of the velocity wave is the same as the 

phase of the pressure wave. 

calculateWavenumber1:  Calculates the components of the 

wavenumber ( )i.e.,  , ,x y zk k k given the wavelength ( )λ , and the location of the 

signal ( )φ θi.e.,  and . Since an incoming plane wave is assumed, the 

wavenumber components are typically negative. 

beamSteer5:  For an array of any length, this function steers the 

beam around the entire circle (0-360 degrees) and sums the result.  It does this 

for any specified processing technique (i.e., pressure, cardioid, or cardynull). 

plotScaling5:  Transforms the data to a decibel format with a 

maximum of zero. 

polar6:  This function is a modified version of the MATLAB® 

standard function polar.  It accepts the data transformed by “plotScaling5” and 

outputs beampatterns with a maximum of 0 dB and a minimum of -50 dB.  It 

allows space for a title at the top of the plot. 

signalExpectation3:  This function provides optional output as 

controlled from the function “plotBeampatterns4.”  It determines the expected 

beampattern when only the signal is present.  It can provide a beampattern for 

any of the processing techniques (i.e., pressure, cardioid, or cardynull). 

noiseExpectation1:  This function provides optional output as 

controlled from the function “plotBeampatterns4.”  It determines the expected 

beampattern when only noise is present.  It only has been utilized for pressure-

only sensor arrays. 
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aboveThreshold2:  Determines if a received level is above or below 

the detection threshold.  The results are stored in two variables: the first records 

a value of one if the received level is above the detection threshold, the second 

records the received level if it is above the detection threshold.  Received levels 

below the detection threshold are set to zero. 

edgeDetect3:  Determines the location of the left and right edges of 

each detection regions.   

detectRegion1:  Groups each detection pair (i.e., left/right edge of 

the detection region) into a matrix.  The output “detectPairs” matrix has a size of 

<# of detection regions, 2>. 

slopeDetermine1:  For values within a detection region, this 

function determines the slope of the receive level by comparing adjacent receive 

levels. 

locationMax2:  This function determines the approximate location of 

the maximum receive level. 

sonarBlip4:  This function determines if the maximum determined 

by “locationMax2” is likely a true positive or a false positive.  It does this by 

comparing the maximum location to the expected signal location.  If the 

maximum is within a tolerance (default ±5 ) of the expected signal location, it is 

assumed to be a true positive.  For nonlinear cardynull processing, an 

adjustment is made in the expected signal maximum location.  This adjustment is 

pre-calculated by the program “cardynullTablemaker” and the accompanying 

function “cardynullTablemakerFunc2” and placed in a table that is supplied to 

“sonarBlip4.” 

c. Level 3 

calculateWavenumberSteering4:  Calculates the wavenumber for 

the steering vector. 
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defineWeightingFactorsPress1:  Sets the weighting factors for the 

pressure-only sensor array.  As a default, uniform weighting was used.  Other 

weighting, (e.g., Hanning) could also be used. 

defineWeightingFactors3:  Sets the weighting factors for vector 

sensor arrays (cardioid or cardynull processing). 

calculateA:  This short function calculates “A” using the following 

formula:  ( )φ= −cos sA . 

combineSensors1:  This function combines the contribution from 

each sensor in the array.  The result is then squared (for pressure or cardioid 

processing) or combined with a dynamic null (for cardynull processing).   

equation2131e:  This function provides the beampattern predicted 

by using vanTrees equation 2.131. 

cardioidBeamPatt2:  This function provides the beampattern 

expected for cardioid processing as predicted by a program originally developed 

by K. B. Smith. 

cardynullBeamPatt2:  This function provides the beampattern 

expected for cardynull processing as predicted by a program originally developed 

by K. B. Smith. 

3. Program and Function to Calculate Cardynull Maximum 
Response 

The program “cardynullTablemaker.m” and the function 

“cardynullTablemakerFunc2.m” produce a matrix with the location of the 

expected maximum signal response as a function of signal location and number 

of sensors.  The matrix is also stored as “cardTable.mat.”  The first column is the 

signal location in degrees (0°–359°).  Columns 2–150 provide the expected 

maximum signal response location in degrees for signals located between 10°–

170° and between 190°–350°.  The values near endfire (i.e., 351°–9° and 171°–

189°) are not accurate and the users are cautioned to not use these values. 
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The nonlinearity of the cardynull response becomes less significant as the 

number of sensors is increased.  At 150 sensors, the location of the maximum 

signal response for cardynull processing becomes effectively equal to the 

location of the signal.  Consequently, users wishing to simulate cardynull 

processing of sensor arrays larger than 150 sensors can neglect the cardynull 

nonlinearity and anticipate the maximum response from the signal direction. 
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IV. RESULTS 

A. DETECTION PERFORMANCE 

This section discusses results obtained using “ROCmaker2” to simulate 

the detection of a signal in noise.  The simulations discussed below were 

completed using certain defaults that can be assumed to exist unless specifically 

stated otherwise.  These defaults include: 

• Signal represented by 1,000 pressure waves (and corresponding 
velocity waves) with normal random amplitude and uniform phase 
all collocated at a point in the array far field. 

• Noise represented by 1,000 pressure waves (and corresponding 
velocity waves) with normal random amplitude and uniform phase 
with random locations uniformly distributed in three-dimensional 
space at points in the array far field. 

• Array spacing equal to one half a wavelength (i.e., λ
2

). 

• Array containing 11 sensors 

• Using 1000 Monte Carlo runs to generate detection statistics 

• Using a SNR value of 0 dB 

• The detection tolerance was ±5° for broadside to 45° from 
broadside.  The detection tolerance was ±15° for 40° from endfire 
to endfire. 

1. At Broadside for Various SNR Values 

The response of pressure only array, a vector sensor array using cardioid 

processing, and a vector sensor array using cardynull processing to a broadside 

signal was already presented in Figure 30.  These results for a signal level equal 

to the noise level illustrate the advantage of vector sensors compared to 

pressure sensors and the additional advantage that cardynull processing can 

achieve over the customary linear (cardioid) processing.  The same processing 

improvements are noted when the signal power is doubled (+3 dB) or halved (-3 

dB) compared to the noise level (see Figure 31 and Figure 32). 
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Figure 31 Comparison of Processing Technique for SNR = 3 dB 



 49

 

Figure 32 Comparison of Processing Technique for SNR = -3 dB 

In Figure 32, the pressure sensor array becomes fairly ineffective.  This is 

evident when the ROC curve for pressure is compared to the black line shown. 

The black line represents the ROC curve if we had no detection information and 

we simply flipped a coin to guess if the signal was present or not.  

Considering nonlinear cardynull processing in comparison to linear 

cardioid processing for the same vector sensor array, we can see (Figure 33) 

that cardynull processing offers approximately a 3 dB improvement.  



 50

 

Figure 33 Cardynull Processing compared to Cardioid Processing 

2. Away from Broadside and Endfire 

Considering a signal location as much as 45 degrees from broadside, 

Figure 34 and Figure 35 show that the same trend remains; namely, nonlinear 

cardynull processing provides the best performance and cardioid processing 

provides better performance than pressure-only sensor arrays. 
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Figure 34 ROC Curves for Signal at 30 degrees from Broadside 

 

Figure 35 ROC Curves for Signal at 45 degrees from Broadside 
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3. Approaching Endfire 

The cardynull processing technique becomes less effective than the other 

techniques as the signal approaches endfire (see Figure 36, Figure 37, and 

Figure 38).  This could be due to how this processing technique reduces the 

response in the ambiguous direction or it could be due to the nonlinear aspect of 

the processing, which may amplify uncorrelated noise more distinctly as the 

processing becomes more nonlinear toward endfire.    

 

 

Figure 36 ROC Curves for Signal at 50 Degrees from Broadside7 

                                            
7 All ROC curves between 45° from broadside and endfire use a detection angle of ± 15°. 
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Figure 37 ROC Curves for Signal at 60 Degrees from Broadside 

 

Figure 38 ROC Curves for Signal at 70 Degrees from Broadside 
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This relative degradation in detection performance for cardynull versus 

cardioid processing is not limited solely to short arrays.  The trend still is evident 

in long arrays (for example, 100 sensors) as shown in Figure 39. 

 

 

Figure 39 ROC Curves for 100 Sensor Arrays With Signal 60 Degrees from 
Broadside 

B. EFFECT OF CHANGING NUMBER OF PRESSURE WAVES 

Figure 40 provides a comparison of results for 10,000 pressure and 

velocity waves versus 1,000 pressure and velocity waves.  This causes a small 

difference in the curves without changing the trends between the processing 

techniques. 
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Figure 40 ROC Curve Comparison of Number of Pressure/Velocity Waves 

C. EFFECT OF CHANGING NUMBER OF MONTE CARLO RUNS 

Figure 41 shows the effect of increasing the number of Monte Carlo runs 

to 10,000.  This plot shows this effect is minimal although we might expect that 

additional Monte Carlo sets with 1,000 runs would form a distribution around the 

Monte Carlo set with 10,000 runs. 
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Figure 41 ROC Curve Comparison of Number of Monte Carlo Runs 

D. EFFECT OF CHANGING AMPLITUDE DISTRIBUTION 

“ROCmaker2” allows the user to choose a random uniform distribution or 

a random normal distribution for the pressure wave amplitude.  The velocity wave 

amplitude is calculated from the pressure wave amplitude; therefore, the velocity 

waves will have the same distribution as specified for the pressure waves.  

Figure 42 shows a small difference between the amplitude distributions; however, 

the trends between the processing techniques remain the same. 
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Figure 42 ROC Curve Comparison for Wave Amplitude Distributions 

E. EFFECT OF ARRAY LENGTH 

Many modern sonar arrays utilize large numbers of sensors to increase 

array directivity as shown in Figure 43, Figure 45, and Figure 47.  This greatly 

improves detection capabilities as we might expect and as shown in Figure 44, 

Figure 46, and Figure 48. 
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Figure 43 Beampattern Comparison for Pressure Arrays 

 

Figure 44 ROC Curve Comparison for Pressure Arrays 
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Figure 45 Beampattern Comparison with Cardioid Processing 

 

Figure 46 ROC Curve Comparison with Cardioid Processing 
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Figure 47 Beampattern Comparison with Cardynull Processing 

 

Figure 48 ROC Curve Comparison with Cardynull Processing 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. PERFORMANCE IMPROVEMENT 

Previous results (Cray & Nuttall, 2001) discussed the directivity 

advantages of linear arrays of vector sensors compared with conventional arrays 

utilizing pressure sensors.  This thesis confirms the improved performance of 

vector sensor arrays over the pressure sensor arrays in the presence of noise.  

Further simulation of vector sensor arrays using linear cardioid processing and 

nonlinear cardynull processing indicates the potential for an additional 3 dB 

improvement using the nonlinear cardynull technique when the target is not near 

endfire and SNR is sufficient (e.g., see Figure 33).  

B. LIMITATION NEAR ENDFIRE 

The cardynull processing technique discussed in this paper becomes 

ineffective as the signal approaches endfire.  Consequently, it is recommended 

that composite processing technique be used: for signals up to and including 45 

degrees from broadside the cardynull processing should be used; for signals 

located greater than 45 degrees from broadside the cardioid processing should 

be used. 

C. NAVAL APPLICATIONS 

The processing techniques discussed in this thesis involve processing 

techniques that require minimal processing capabilities as compared to most 

modern data-adaptive, nonlinear processing techniques.  It is anticipated that 

naval platforms with sufficient processing capabilities will continue to use these 

modern adaptive processing techniques due to their effectiveness.  The 

combined cardynull/cardioid processing technique recommended in this thesis is, 

therefore, most appropriate for use on smaller platforms (e.g., UUVs) that lack 

the processing power of the larger platforms (e.g., surface ships). 
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D. FUTURE WORK 

1. Other Nonlinear Processing Techniques 

The nonlinear cardynull processing technique discussed in this thesis 

seems promising; however, it is not the only nonlinear processing technique that 

has been proposed by researchers.  Another class of nonlinear processing 

techniques called hippioids has been discussed in previous articles (Smith & 

Leijen, 2007).  Future exploration of beamformers based on these simple, non-

adaptive processing techniques may prove useful.  More significant 

improvements in processing are expected when utilizing sophisticated, nonlinear 

data-adaptive methods, particularly in cases of very low SNR; however, these 

adaptive methods also require additional computational complexity. 

2. Multiple Targets 

This thesis was limited to the simulation of one correlated signal (i.e., one 

target) in uncorrelated noise.  Future work could consider the simulation of 

several signals in uncorrelated noise. 

3. Broadband 

For simplicity, this thesis considered a continuous wave (CW) with a 

constant frequency.  Future work could consider other waveforms including 

broadband signals and broadband noise. 
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APPENDIX A.  PRIMARY PROGRAM (MATLAB) 

%% Program ROCmaker2 
clc; 
clear; 
close all; 
%% Variables: 
SNRn = [-3 0 3];              % Signal to Noise Ratios (dB) 
Npw = 1000;                   % Number of pressure waves 
distrib  = 'normal';          % Amplitude distibution 'normal' or 'uniform' 
N = 11;                       % Number of elements in the array 
lambda = 150;                 % Wavelength (mm) 
phiSigDeg = 90;                   % Location of signal, phi (deg) 
nMC = 1000;                       % Number of Monte Carlo Runs 
SAR = 1;                          % Steering Angle Resolution (deg) 
tol = 15;                         % Tolerance(deg) for true target location 
phiS = 0:SAR:360-SAR;             % Steering Angle, phi (deg) 
thetaS = zeros(1,length(phiS));   % Steering Angle, theta (deg) 
rho = 1000;                       % Density of medium (kg/m^3) 
c   = 1500;                       % Speed of light in medium (m/s) 
levelMultiplier = [0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.97 0.98 ... 
                                                        0.99 0.995 1 1.01]; 
phiSignal=phiSigDeg.*ones(1,Npw);         % Location of signal, phi (deg) 
thetaSignal=zeros(1,Npw);                 % Location of signal, theta (deg) 
phiNoise  = 0:(360/Npw):360-(360/Npw);    % Location of noise (deg) 
thetaNoise=180*rand(1,Npw)-90;            % Location of noise, theta (deg) 
mcSbeamPatterns =  zeros(3,nMC,360/SAR); 
mcNbeamPatterns =  zeros(3,nMC,360/SAR); 
mcSNbeamPatterns = zeros(3,nMC,360/SAR); 
aveSbeamPattern =  zeros(3,360/SAR); 
aveNbeamPattern =  zeros(3,360/SAR); 
aveSNbeamPattern = zeros(3,360/SAR); 
mcNbeamPattern = zeros(nMC,360/SAR); 
mcSNbeamPattern = zeros(nMC,360/SAR); 
SNRarray = zeros(1,nMC); 
measuredSNR = zeros(1,3); 
  
FPrate = zeros(length(SNRn),length(levelMultiplier),3); 
TPrate = zeros(length(SNRn),length(levelMultiplier),3); 
fpRate = zeros(length(levelMultiplier),3); 
tpRate = zeros(length(levelMultiplier),3); 
%% Create and show array arrangement 
n = makeMatrix_n2(N); 
r = arraySensorLocation1(n,lambda); 
if 1 % plotting off 
  showArrayArrangement1(r); 
  showSignalLocation2(N,lambda,phiSignal);  % Illustrates signal location 
  showArrayArrangement2(r); 
  showNoiseLocation3(N,lambda,phiNoise,thetaNoise); 
end                                           % Illustrates noise location 
%% Main Program 
for nn = 1:length(SNRn)    
SNR = SNRn(1,nn);             % Signal to Noise Ratio 
% Calculate beampatterns for each wavetype and sensor type. 
[SbeamPatterns NbeamPatterns SNbeamPatterns]= ... 
      beamPatternFunction5(SNR,N,Npw,distrib,nMC,lambda,phiSignal,... 
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                      r,thetaSignal,phiNoise,thetaNoise,phiS,thetaS,rho,c); 
  for sT = 1:3 
   mcSbeamPatterns(sT,1:nMC,:)  =   SbeamPatterns(sT,1:nMC,:); 
   mcNbeamPatterns(sT,1:nMC,:)  =   NbeamPatterns(sT,1:nMC,:); 
   mcSNbeamPatterns(sT,1:nMC,:) =  SNbeamPatterns(sT,1:nMC,:); 
   aveSbeamPattern(sT,:)  =         SbeamPatterns(sT,nMC+1,:); 
   aveNbeamPattern(sT,:)  =         NbeamPatterns(sT,nMC+1,:); 
   aveSNbeamPattern(sT,:) =        SNbeamPatterns(sT,nMC+1,:); 
  end 
  clear SbeamPatterns 
  clear NbeamPatterns 
  clear SNbeamPatterns 
 % Display beampatterns and calculate true/false positive rates 
 for sT = 1:3 
  if 1 
    plotBeampatterns4(N,SNR,phiSigDeg,phiS,sT,aveSbeamPattern(sT,:),... 
                                                   aveNbeamPattern(sT,:)); 
  end 
  [fp_rate tp_rate] = rateCalc1(mcSbeamPatterns,mcNbeamPatterns,... 
      mcSNbeamPatterns,aveSbeamPattern,aveNbeamPattern,aveSNbeamPattern,... 
      N,phiSigDeg,phiS,SAR,tol,levelMultiplier,sT,nMC); 
  if 0 % individual ROC curves turned off 
    figure;plot(fp_rate,tp_rate); 
    title([num2str(N) ' sensor ' sensorType ' array with signal at ' ... 
                                           ', SNR = ' num2str(SNR) ' dB']); 
  end 
    fpRate(:,sT) = fp_rate; 
    tpRate(:,sT) = tp_rate; 
    FPrate(nn,:,sT) = fp_rate; 
    TPrate(nn,:,sT) = tp_rate; 
 end 
 % Display final ROC curves 
 figure;plot(fpRate,tpRate); 
 legend('pressure','cardioid', 'cardynull','location','southeast'); 
 title([num2str(N) ' sensor arrays with signal at ' num2str(phiSigDeg) ... 
                                           ', SNR = ' num2str(SNR) ' dB']);  
end 
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APPENDIX B.  LEVEL 1 FUNCTIONS (MATLAB) 

Function makeMatrix_n2: 
function n2 = makeMatrix_n2(N) 
n=(-(N-1)/2:(N-1)/2)'; 
n2=-n; % Reverse the order since the first sensor element is positive. 

Function arraySensorLocation1: 
function r = arraySensorLocation1(n,lambda) 
% A function to determine the location of each sensor in an array. 
% This function works for arrays with either even or odd number of 
% sensors. 
zeroArray=zeros(length(n),1); 
d=lambda/2; 
rx=n*d; 
r = [rx zeroArray zeroArray]; % All sensors are located on the x-axis 
 

Function showArrayArrangement1: 
function showArrayArrangement1(r) 
xLocation = zeros(length(r(:,1,1))); 
figure;plot(xLocation,r(:,1,1),'ok'); 

Function showSignalLocation2: 
function showSignalLocation2(N,lambda,phiSource) 
radialDistance = N*lambda/2; 
dataPointVertical = radialDistance*cosd(phiSource); 
dataPointHorizontal = radialDistance*sind(phiSource); 
hold on;plot(dataPointHorizontal,dataPointVertical,'pk'); 
plotLimit = 1.5*radialDistance; 
xlim([-plotLimit plotLimit]) 
ylim([-plotLimit plotLimit]) 
title('Illustration of Signal Location'); 

Function showArrayArrangement2: 
function showArrayArrangement2(r) 
xLocation = zeros(length(r(:,1,1))); 
zLocation = xLocation; 
figure;plot3(xLocation,r(:,1,1),zLocation,'ok'); 

Function showNoiseLocation3: 
function showNoiseLocation3(N,lambda,phiNoise,thetaNoise) 
radialDistance = N*lambda/2; 
% Note: Adjustment made since MATLAB plot coodinates are different than  
% North, East, Down convention commonly used in undersea work.  
dataPointX = radialDistance*cosd(thetaNoise).*sind(phiNoise); 
dataPointY = radialDistance*cosd(phiNoise); 
dataPointZ = -radialDistance*sind(thetaNoise).*sind(phiNoise); 
hold on;plot3(dataPointX,dataPointY,dataPointZ,'xr'); 
plotLimit = 1.5*radialDistance; 
xlim([-plotLimit plotLimit]) 



 66

ylim([-plotLimit plotLimit]) 
zlim([-plotLimit plotLimit]) 
title('Illustration of Noise Locations'); 

Function beamPatternFunction5 
function [SbeamPatterns NbeamPatterns SNbeamPatterns] = ... 
         
beamPatternFunction5(SNR,N,Npw,distrib,nMC,lambda,phiSignal,... 
                       
r,thetaSignal,phiNoise,thetaNoise,phiS,thetaS,rho,c) 
beamSum = zeros(3,length(phiS)); 
BEAMSUMsig = zeros(3,length(phiS)); 
BEAMSUMnoi = zeros(3,length(phiS)); 
sumSignal = 0; 
sumNoise  = 0; 
sumSNR    = 0; 
SbeamPatterns  = zeros(3,nMC+1,length(phiS)); 
NbeamPatterns  = zeros(3,nMC+1,length(phiS)); 
if N==1 
  'warning: cardTable does not provide data for just one sensor' 
end 
if N>150 
  'warning: cardTable does not provide data for more than 150 sensors' 
end 
%% Monte Carlo Section 
for iMC = 1:nMC      % Begin Monte Carlo 
  for i_wt = 1:2         % For both wavetypes (signal and noise) 
    if i_wt == 1 
      wavetype = 'signal'; 
      [pressAmpSig pressPhsSig]= generatePressAmpPhs2(Npw,distrib); 
      pressAmpSig = sqrt(10^(SNR/10))*pressAmpSig; 
      pressSig = pressAmpSig.*exp(-1i*pressPhsSig); 
      sumSignal = sumSignal + (sum(abs(pressSig))^2)/length(pressSig); 
      [velAmpSig velPhsSig] = ... 
                         
generateVelAmpPhs2(pressAmpSig,pressPhsSig,rho,c); 
    end 
    if i_wt == 2 
      wavetype = 'noise'; 
      [pressAmpNoi pressPhsNoi]= generatePressAmpPhs2(Npw,distrib); 
      pressNoi = pressAmpNoi.*exp(-1i*pressPhsNoi); 
      sumNoise  = sumNoise  + (sum(abs(pressNoi))^2)/length(pressNoi); 
      [velAmpNoi velPhsNoi] = ... 
                         
generateVelAmpPhs2(pressAmpNoi,pressPhsNoi,rho,c);     
    end 
    if strcmp(wavetype,'signal') 
      pressAmp = pressAmpSig; 
      pressPhsSource = pressPhsSig; 
      velAmp = velAmpSig; 
      velPhsSource = velPhsSig; 
      theta = thetaSignal; 
      phi = phiSignal; 
    end 
    if strcmp(wavetype,'noise') 
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      pressAmp = pressAmpNoi; 
      pressPhsSource = pressPhsNoi; 
      velAmp = velAmpNoi; 
      velPhsSource = velPhsNoi; 
      theta = thetaNoise; 
      phi = phiNoise; 
    end 
    k = calculateWavenumber1(lambda,theta,phi); 
    k_dot_r = (k*r')'; 
    pressPhsArray = zeros(N,Npw); 
    press = zeros(N,1); 
    velPhsArray = zeros(N,Npw); 
    V  = calculateV1(velAmp,theta,phi); 
    vxo = zeros(N,Npw); 
    vyo = zeros(N,Npw); 
    vzo = zeros(N,Npw); 
    vx = zeros(N,1); 
    vy = zeros(N,1); 
    vz = zeros(N,1); 
    for n = 1:N 
      pressPhsArray(n,:) = pressPhsSource + k_dot_r(n,:); 
      press(n) = sum(pressAmp.*exp(-1i*pressPhsArray(n,:))); 
      velPhsArray(n,:) = velPhsSource + k_dot_r(n,:); 
      vxo(n,:) = V(:,1)'; 
      vyo(n,:) = V(:,2)'; 
      vzo(n,:) = V(:,3)'; 
      vx(n) = sum(vxo(n,:).*exp(-1i*velPhsArray(n,:))); 
      vy(n) = sum(vyo(n,:).*exp(-1i*velPhsArray(n,:))); 
      vz(n) = sum(vzo(n,:).*exp(-1i*velPhsArray(n,:))); 
    end 
    Vp = press/(rho*c); 
    vp = Vp; 
    ks = calculateWavenumber1(lambda,thetaS,phiS); 
    v = [vx vy vz vp];  
    for sT = 1:3 
      if sT == 1 
        sensorType = 'pressure'; 
      end 
      if sT == 2 
        sensorType = 'cardioid'; 
      end 
      if sT == 3 
        sensorType = 'cardynull'; 
      end 
      if strcmp(sensorType,'pressure') 
        beamSum(1,:) = 
beamSteer5(N,length(phiS),r,lambda,v,'pressure'); 
      else if strcmp(sensorType,'cardioid') 
        beamSum(2,:) = 
beamSteer5(N,length(phiS),r,lambda,v,'cardioid'); 
        else if strcmp(sensorType,'cardynull') 
          beamSum(3,:) = 
beamSteer5(N,length(phiS),r,lambda,v,'cardynull'); 
            end 
          end 
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      end 
    end 
    if strcmp(wavetype,'signal') 
      BEAMSUMsig = BEAMSUMsig+beamSum; % Sum beampatterns for each MC 
run 
      beamSumSig = beamSum; 
      SbeamPatterns(:,iMC,:) = beamSumSig; 
    end 
    if strcmp(wavetype,'noise') 
      BEAMSUMnoi = BEAMSUMnoi+beamSum; % Sum beampatterns for each MC 
run    
      beamSumNoi = beamSum; 
      NbeamPatterns(:,iMC,:) = beamSumNoi; 
    end 
  end 
  measuredSNR = sumSignal/sumNoise;        % Begin SNR calculations 
  sumSNR = sumSNR + measuredSNR; 
end   % End Monte Carlo Section 
aveMeasuredSNR = 10*log10(sumSNR/nMC)      % End SNR calculations 
SbeamPatterns(:,nMC+1,:) = BEAMSUMsig; 
NbeamPatterns(:,nMC+1,:) = BEAMSUMnoi; 
SNbeamPatterns = SbeamPatterns + NbeamPatterns; 

Function plotBeampatterns4: 
function 
plotBeampatterns4(N,SNR,phiSigDeg,phiS,sT,BEAMSUMsig,BEAMSUMnoi)  
 if sT == 1 
    sensorType = 'pressure'; 
 end 
 if sT == 2 
    sensorType = 'cardioid'; 
 end 
 if sT == 3 
    sensorType = 'cardynull'; 
 end 
  beamdb2sig=plotScaling5(BEAMSUMsig); % Scaling prior to plotting 
  beamdb2noi=plotScaling5(BEAMSUMnoi);     
  signalBeamSum = BEAMSUMsig;          % Save these for use later 
  signalBeamdb2 = beamdb2sig;          % 
  noiseBeamSum = BEAMSUMnoi;           % Save these for use later 
  noiseBeamdb2 = beamdb2noi;           % 
  
  %% Combining Signal and Noise 
  SNbeamSum = signalBeamSum + noiseBeamSum; 
  SNbeamdb2=plotScaling5(SNbeamSum);   % Scaling prior to %plotting 
  
  %% Comparison against expectations 
  if 0 %turn off expectation plotting 
    if strcmp(sensorType,'pressure') 
      figure;polar6(phiS*pi/180,signalBeamdb2,'k');view([90 -90]); 
      [B steerAngDeg] = signalExpectation3(N,phiSigDeg,'pressure'); 
      Bdb2=plotScaling5(B); 
      hold on; polar6(steerAngDeg*pi/180,Bdb2,'g'); 
      title ('Signal compared to Signal Expectation - Pressure'); 
      legend('signal','signal expectation','location','southeast'); 
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      figure;polar6(phiS*pi/180,noiseBeamdb2,'r');view([90 -90]); 
      [Bsum steerAngDeg] = noiseExpectation1(N); 
     Bsumdb2=plotScaling5(Bsum); 
      hold on; polar6(steerAngDeg*pi/180,Bsumdb2,'g'); 
      title ('Noise compared to Noise Expectation - Pressure'); 
      legend('noise','noise expectation','location','southeast'); 
    end 
    if strcmp(sensorType,'cardioid')||strcmp(sensorType,'cardynull') 
      figure;polar6(phiS*pi/180,signalBeamdb2,'k');view([90 -90]); 
      [B2 steerAngDeg2] = signalExpectation3(N,phiSigDeg,sensorType); 
      Bdb2=plotScaling5(B2); 
      hold on; polar6(steerAngDeg2,Bdb2,'g'); 
      if strcmp(sensorType,'cardioid') 
        title ('Signal compared to Signal Expectation- Cardioid'); 
      end 
      if strcmp(sensorType,'cardynull') 
        title ('Signal compared to Signal Expectation- Cardynull'); 
      end 
      legend('signal','signal expectation','location','southeast'); 
    end 
  end 
  %% Plot Signal, Noise and S&N 
  if 1 % turn on  
    figure; polar6(phiS*pi/180,signalBeamdb2,'k'); 
    hold on; polar6(phiS*pi/180,noiseBeamdb2,'r'); 
    hold on; polar6(phiS*pi/180,SNbeamdb2,'b'); 
    view([90 -90]); 
    title([sensorType ' array, N = ' num2str(N) ', SNR = ' 
num2str(SNR)... 
                        ' dB, signal at: ' num2str(phiSigDeg) ' 
degrees']); 
    legend('signal only','noise only','S&N','location','southeast'); 
    % Signal and Noise Combined 
    figure;polar6(phiS*pi/180,SNbeamdb2,'b');view([90 -90]); 
    title([sensorType ' array, N = ' num2str(N) ', SNR = ' 
num2str(SNR)... 
                        ' dB, signal at: ' num2str(phiSigDeg) ' 
degrees']); 
    legend('S&N','location','southeast'); 
  end 
end 

Function rateCalc2: 
function [fp_rate tp_rate] = 
rateCalc2(mcSbeamPatterns,mcNbeamPatterns,... 
     
mcSNbeamPatterns,aveSbeamPattern,aveNbeamPattern,aveSNbeamPattern,... 
     N,phiSigDeg,phiS,SAR,tol,levelMultiplier,sT,nMC) 
 load cardTable                   % Peak response vs. Signal 
Angle(N=2:150) 
table(:,1) = TABLE(:,1);          % Signal Angle (0:359) 
table(:,2) = TABLE(:,N);          % Peak response(for the N specified) 
 if sT == 1 
    sensorType = 'pressure'; 
 end 
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 if sT == 2 
    sensorType = 'cardioid'; 
 end 
 if sT == 3 
    sensorType = 'cardynull'; 
 end 
 for iMC = 1:nMC 
      beamSumSig =  mcSbeamPatterns(sT,iMC,:); 
      beamSumNoi =  mcNbeamPatterns(sT,iMC,:); 
      totalSum   = mcSNbeamPatterns(sT,iMC,:); 
      BEAMSUMsig = aveSbeamPattern(sT,:); 
      BEAMSUMnoi = aveNbeamPattern(sT,:); 
      maxLevel = max(totalSum); 
      hypoPosN  = zeros(1,length(levelMultiplier)); 
      hypoPosSN = zeros(1,length(levelMultiplier)); 
      for m = 1:length(levelMultiplier) 
        detectThresh2 = levelMultiplier*maxLevel;  % detection level 
        [hypoPosN hypoPosPlotN]  = 
aboveThreshold2(beamSumNoi,detectThresh2(m)); 
        [leftEdgesN rightEdgesN] = edgeDetect3(hypoPosN); 
        if 0 %strcmp(sensorType,'pressure') &&  iMC < 15 && m==1  
                                       % conditional to limit plotting 
          DT = detectThresh2(m)*ones(1,length(phiS)); 
          figure; set(gcf,'Renderer','Opengl'); 
          subplot(3,2,1);plot(phiS,beamSumNoi,'r');hold on; 
          title(['  N only' ' ,MC# =' num2str(iMC)]);  
          subplot(3,2,1);plot(phiS,DT,'m'); 
          subplot(3,2,2);plot(phiS,totalSum,'b');hold on; 
          subplot(3,2,2);plot(phiS,DT,'m'); 
          title(['       S&N' ' ,SA = ' num2str(phiSigDeg)  ... 
                                           ' ,MC# =' num2str(iMC)  ]); 
        end 
       [hypoPosSN hypoPosPlotSN] = 
aboveThreshold2(totalSum,detectThresh2(m)); 
       [leftEdgesSN rightEdgesSN] = edgeDetect3(hypoPosSN); 
       falseBlip = NaN(1,length(phiS)); 
       trueBlip =  NaN(1,length(phiS)); 
       if max(leftEdgesN)~=0 && max(rightEdgesN)~=0 
         %'N edge is defined' 
         detectPairsN = 
detectRegion1(leftEdgesN,rightEdgesN,hypoPosPlotN); 
         slopeSignN = slopeDetermine1(detectPairsN,hypoPosPlotN); 
         locIndexN = 
locationMax2(detectPairsN,slopeSignN,hypoPosPlotN); 
         [trueBlip falseBlip] = 
sonarBlip4(locIndexN,phiSigDeg,phiS,SAR,tol,sensorType,table); 
         if 0% strcmp(sensorType,'pressure') && iMC < 15 && m==1   
                                       % conditional to limit plotting  
          subplot(3,2,3);plot(phiS,hypoPosPlotN,'r');title('hypoPos'); 
       subplot(3,2,5);polar(phiS*pi/180,falseBlip,'r*');view([90 -90]); 
          title('Location of false targets'); 
         end 
       end 
      if max(leftEdgesSN)~=0 && max(rightEdgesSN)~=0 
        %'SN edge is defined' 
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        detectPairsSN = 
detectRegion1(leftEdgesSN,rightEdgesSN,hypoPosPlotSN); 
        slopeSignSN = slopeDetermine1(detectPairsSN,hypoPosPlotSN); 
        locIndexSN = 
locationMax2(detectPairsSN,slopeSignSN,hypoPosPlotSN);      
        [trueBlip falseBlip] = 
sonarBlip4(locIndexSN,phiSigDeg,phiS,SAR,tol,sensorType,table); 
        if 0% strcmp(sensorType,'pressure') && iMC < 15 && m==1  
                                        % conditional to limit plotting  
          subplot(3,2,4);plot(phiS,hypoPosPlotSN,'b');title('hypoPos'); 
          subplot(3,2,6);polar(phiS*pi/180,trueBlip,'g*');hold on; 
          subplot(3,2,6);polar(phiS*pi/180,falseBlip,'r*');view([90 -
90]); 
          title('Location of true (and false) targets'); 
        end 
      end 
      if max(falseBlip) == 1 
        FP(m,iMC) = 1; 
      else 
        FP(m,iMC) = 0; 
      end 
      if max(trueBlip) == 1 
        TP(m,iMC) = 1; 
      else 
        TP(m,iMC) = 0; 
      end 
     end     % End Detection Threshold 
 end   % End Monte Carlo 
    %aveMeasuredSNR = sumSNR(nn)/nMC    % End SNR calculations         
  fp_rate = zeros(length(detectThresh2),1);   % Begin fp/tp rate calcs 
  tp_rate = zeros(length(detectThresh2),1); 
  for m = 1:length(detectThresh2) 
    fp_rate(m) = sum(FP(m,:))/nMC; 
    tp_rate(m) = sum(TP(m,:))/nMC; 
  end % End fp/tp rate calcs 
end 
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APPENDIX C.  LEVEL 2 FUNCTIONS (MATLAB) 

Function generatePressAmpPhs2: 
function [amp2 phase] = generatePressAmpPhs2(Npw,distrib) 
%% Variables 
% Input: 
%   Npw      = number of pressure waves 
%   distrib  = distribution type: 'uniform' or 'normal' 
% Output: 
%   amp2   = amplitude of the wave (squared) 
%   phase = phase of the wave (at source) 
%% Calculations 
% Establish the phase of the pressure waves at the source. 
phase = 2*pi*rand(1,Npw); 
% Check that 'distrib' is valid 
if strcmp(distrib,'uniform') 
       %'distrib acceptable' 
else 
   if strcmp(distrib,'normal') 
       %'distrib acceptable' 
   else 
       'Warning: The variable distrib must ''uniform'' or ''normal''.' 
   end 
end 
% Establish the amplitude of the pressure wave. 
if strcmp(distrib,'normal') 
      amp2 = 1 + 0.33.*randn(1,Npw);  % mean(S^2) is 1  
      %'mean(S^2) = ', mean(amp2) 
end 
if strcmp(distrib,'uniform') 
      amp2 = 2.*rand(1,Npw);      % mean(S^2) is 1  
      %'mean(S^2) = ', mean(amp2) 
end                 

Function generateVelAmpPhs2: 
function [velAmp velPhs]= generateVelAmpPhs2(pressAmp,pressPhs,rho,c) 
velAmp = pressAmp/(rho*c); 
velPhs = pressPhs;          % Pressure and Velocity are in Phase!! 

Function calculateWavenumber1: 
function k = calculateWavenumber1(lambda,theta,phi) 
% This function computes the wavenumber vector given lambda and  
% the angles (theta,phi).  This function assumed theta and phi are  
%provided in degrees. 
  
% Note: since the wavelength, lambda, has units of mm, k has units of 
1/mm. 
K = 2*pi/lambda;  % k = omega/c = 2*pi*f/c = 2*pi/lambda 
k = zeros(length(phi),3); 
k(:,1) = -K.*cosd(phi); 
 
k(:,2) = -K.*cosd(theta).*sind(phi); 
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k(:,3) = -K.*sind(theta).*sind(phi); 

Function beamSteer5: 
function beamSum = beamSteer5(N,nSteerAngles,r,lambda,v,sensorType) 
bpress = zeros(N,nSteerAngles); 
b = zeros(N,nSteerAngles); 
bPrime = zeros(N,nSteerAngles); 
thetaS = 0; 
  
mm=1; 
for angleDeg = 0:(360/nSteerAngles):360-(360/nSteerAngles) 
    phiSdeg = angleDeg;          % Steering Angle, phi-s (deg) 
    phiS = phiSdeg*pi/180;       % Steering Angle, phi-s (rad) 
    ks = calculateWavenumberSteering4(lambda,thetaS,phiS); 
    ks_dot_r = ks*r'; 
     
  if strcmp(sensorType,'pressure') % For Pressure-only Elements - Begin 
    A = 1;  
    w = defineWeightingFactorsPress1(N,A); 
    wvpress = w.*v; 
    wvSumpress = zeros(N,1); 
    for m = 1:4 
         wvSumpress = wvSumpress + wvpress(:,m); 
    end 
    bpress(:,mm) = wvSumpress.*exp(-1i*ks_dot_r');  
                                    % For Pressure-only Elements - End 
  end 
  if strcmp(sensorType,'cardioid') || strcmp(sensorType,'cardynull') 
                                    % For Cardioid (or Cardynull) Begin 
    A = 1;  
    w = defineWeightingFactors3(N,A,thetaS,phiS); 
    wv = w.*v; 
    wvSum = zeros(N,1); 
    for m = 1:4 
         wvSum = wvSum + wv(:,m); 
    end 
    b(:,mm) = wvSum.*exp(-1i*ks_dot_r');  
                                                  % For Cardioid - End 
  end 
  if strcmp(sensorType,'cardynull') 
                                            % For Cardynull - Continue 
    A = calculateA(phiS); %Part 2 
    w = defineWeightingFactors3(N,A,thetaS,phiS); 
    wv = w.*v; 
    wvSum = zeros(N,1); 
    for m = 1:4 
         wvSum = wvSum + wv(:,m); 
    end 
    bPrime(:,mm) = wvSum.*exp(-1i*ks_dot_r'); 
                                                  % For Cardynull - End 
  end 
    mm = mm+1; 
end 
  
 if strcmp(sensorType,'pressure') 
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  % Combine the output of each element to get the beam output 
  beamsumPress = combineSensors1(N,bpress,bpress,nSteerAngles); 
  beamSum = beamsumPress; 
  
 end 
 if strcmp(sensorType,'cardioid') 
  % Combine the output of each element to get the beam output 
  beamsumCardioid = combineSensors1(N,b,b,nSteerAngles);  
  beamSum = beamsumCardioid; 
 end 
 if strcmp(sensorType,'cardynull') 
  % Combine the output of each element to get the beam output 
  beamsumCardynull = combineSensors1(N,b,bPrime,nSteerAngles); 
  beamSum = beamsumCardynull; 
 end 
 
Function plotScaling5: 
 
function Bdb2 = plotScaling5(B) 
B=B/(max(B));            % B becomes a ratio between 0 and 1. 
Bdb=10*log10(B);         % Bdb is a value in decibels. 
Bdb2 = Bdb-max(Bdb); % Bdb2 is a value in decibels with a maximum of 0. 
 
Function polar6: 
 
function hpol = polar6(varargin) 
%POLAR  Polar coordinate plot. 
%   POLAR(THETA, RHO) makes a plot using polar coordinates of 
%   the angle THETA, in radians, versus the radius RHO. 
%   POLAR(THETA,RHO,R) uses the radial limits specified by the two 
element 
%   vector R. 
%   POLAR(THETA,RHO,S) uses the linestyle specified in string S. 
%   See PLOT for a description of legal linestyles.  
%   POLAR(THETA,RHO,R,S) uses the linestyle specified in string S and 
the 
%   radial limits in R. 
% 
%   POLAR(AX,...) plots into AX instead of GCA. 
% 
%   H = POLAR(...) returns a handle to the plotted object in H. 
% 
%   Example: 
%      t = 0:.01:2*pi; 
%      polar(t,sin(2*t).*cos(2*t),'--r') 
% 
%   See also PLOT, LOGLOG, SEMILOGX, SEMILOGY. 
% 
%   Revised version by Daniel Armyr, 2009. Based on Mathworks original. 
%   Further revised by David Tassia, August 2009; see notes with DT 
initials. 
%   Additional revision by Tassia, September 2009 to eliminate the  
%     label at 0 degrees (which otherwise interfers with the title). 
%   Additional revision by Tassia to eliminate the restriction of the  
%     length of the variable 'rho'. 
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%   Copyright 1984-2007 The MathWorks, Inc. 
%   $Revision: 5.22.4.9 $  $Date: 2007/08/27 17:06:52 $ 
  
% Parse possible Axes input 
[cax,args,nargs] = axescheck(varargin{:}); 
error(nargchk(1,4,nargs,'struct')); 
  
if nargs < 1 || nargs > 4 
    error('MATLAB:polar:InvalidInput', 'Requires 2 to 4 data 
arguments.') 
elseif nargs == 2  
    theta = args{1}; 
    rho = args{2};   
    if ischar(rho) 
        line_style = rho; 
        rho = theta; 
        [mr,nr] = size(rho); 
        if mr == 1 
            theta = 1:nr; 
        else 
            th = (1:mr)'; 
            theta = th(:,ones(1,nr)); 
        end 
    else 
        line_style = 'auto'; 
    end 
    radial_limits = []; 
elseif nargs == 1 
    theta = args{1}; 
    line_style = 'auto'; 
    rho = theta; 
    [mr,nr] = size(rho); 
    if mr == 1 
        theta = 1:nr; 
    else 
        th = (1:mr)'; 
        theta = th(:,ones(1,nr)); 
    end 
    radial_limits = []; 
elseif nargs == 3 
    if ( ischar(args{3}) ) 
        [theta,rho,line_style] = deal(args{1:3}); 
        radial_limits = []; 
    else 
        [theta,rho,radial_limits] = deal(args{1:3}); 
        line_style = 'auto'; 
        if ( ~(numel(radial_limits) == 2) ) 
            error ( 'R must be a 2 element vector' ); 
        end 
    end 
else %nargs == 4 
    [theta,rho,radial_limits,line_style] = deal(args{1:4});         
    if ( ~(numel(radial_limits) == 2) ) 
        error ( 'R must be a 2 element vector' ); 
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    end     
end 
  
if ischar(theta) || ischar(rho) 
    error('MATLAB:polar:InvalidInputType', 'Input arguments must be 
numeric.'); 
end 
if ~isequal(size(theta),size(rho)) 
    error('MATLAB:polar:InvalidInput', 'THETA and RHO must be the same 
size.'); 
end 
% DT: This section was added to facilitate plotting using the 
%     otherwise standard polar.m commands  
  
rho = rho+50;  % DT: Add 50 dB so the plotted radius can be positive 
% DT: Now zero all of the data that is more than 50 dB below the 
maximum. 
for k = 1:length(rho) 
    if rho(k) <= 0 
         rho(k) = 0; 
    end 
end 
% DT: end of added section 
% get hold state 
cax = newplot(cax); 
  
next = lower(get(cax,'NextPlot')); 
hold_state = ishold(cax); 
  
% get x-axis text color so grid is in same color 
tc = get(cax,'xcolor'); 
ls = get(cax,'gridlinestyle'); 
  
% Hold on to current Text defaults, reset them to the 
% Axes' font attributes so tick marks use them. 
fAngle  = get(cax, 'DefaultTextFontAngle'); 
fName   = get(cax, 'DefaultTextFontName'); 
fSize   = get(cax, 'DefaultTextFontSize'); 
fWeight = get(cax, 'DefaultTextFontWeight'); 
fUnits  = get(cax, 'DefaultTextUnits'); 
set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ... 
    'DefaultTextFontName',   get(cax, 'FontName'), ... 
    'DefaultTextFontSize',   get(cax, 'FontSize'), ... 
    'DefaultTextFontWeight', get(cax, 'FontWeight'), ... 
    'DefaultTextUnits','data') 
  
% only do grids if hold is off 
if ~hold_state 
  
% make a radial grid 
    hold(cax,'on'); 
    set(cax,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto') 
     
    % ensure that Inf values don't enter into the limit calculation. 
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    arho = abs(rho(:));     
    if ( isempty(radial_limits) ) 
        maxrho = max(arho(arho ~= Inf)); 
        minrho = 0;         
        hhh=line([minrho minrho maxrho maxrho],[minrho maxrho maxrho 
minrho],'parent',cax);         
        v = [get(cax,'xlim') get(cax,'ylim')]; 
        ticks = numel(get(cax,'ytick')); 
        delete(hhh); 
        % check radial limits and ticks 
        rmin = v(1); rmax = v(4); rticks = max(ticks-1,2); 
        if rticks > 5   % see if we can reduce the number 
            if rem(rticks,2) == 0 
                rticks = rticks/2; 
            elseif rem(rticks,3) == 0 
                rticks = rticks/3; 
            end 
        end 
        rinc = (rmax-rmin)/rticks; 
         
    else 
        rmax = radial_limits(2); 
        rmin = radial_limits(1); 
        order = (10^floor(log10(rmax-rmin))); 
        firstDigit = floor((rmax-rmin)/order); 
        if ( firstDigit <= 1 ) 
            step = 0.2*order; 
        elseif ( firstDigit <= 3 ) 
            step = 0.5*order; 
        elseif ( firstDigit <= 7 ) 
            step = order; 
        else 
            step = 2*order; 
        end 
        rinc = step; 
    end 
  
% define a circle 
    th = 0:pi/50:2*pi; 
    xunit = cos(th); 
    yunit = sin(th); 
% now really force points on x/y axes to lie on them exactly 
    inds = 1:(length(th)-1)/4:length(th); 
    xunit(inds(2:2:4)) = zeros(2,1); 
    yunit(inds(1:2:5)) = zeros(3,1); 
% plot background if necessary 
    if ~ischar(get(cax,'color')), 
       patch('xdata',xunit*(rmax-rmin),'ydata',yunit*(rmax-rmin), ... 
             'edgecolor',tc,'facecolor',get(cax,'color'),... 
             'handlevisibility','off','parent',cax); 
    end 
  
% draw radial circles 
    c82 = cos(82*pi/180); 
    s82 = sin(82*pi/180);     
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    for i=(rmin+rinc):rinc:rmax 
        hhh = line(xunit*(i-rmin),yunit*(i-
rmin),'linestyle',ls,'color',tc,'linewidth',1,... 
                   'handlevisibility','off','parent',cax); 
        text((i-2-rmin+rinc/20)*c82,(i-2-rmin+rinc/20)*s82, ... 
            ['  ' num2str(i-50)],'verticalalignment','bottom',... 
            'handlevisibility','off','parent',cax) 
        % DT: Replacing i with i-50 provides the desired labeling 
        %     (i.e. maximum of 0 dB minimum of -50 dB) 
        % DT: Replacing i with i-2 moves labels (e.g. -10 dB) closer to 
the 
        %     circles that they are labeling. 
    end 
    set(hhh,'linestyle','-') % Make outer circle solid 
  
% plot spokes 
    th = (1:6)*2*pi/12; 
    cst = cos(th); snt = sin(th); 
    cs = [-cst; cst]; 
    sn = [-snt; snt]; 
    line((rmax-rmin)*cs,(rmax-
rmin)*sn,'linestyle',ls,'color',tc,'linewidth',1,... 
         'handlevisibility','off','parent',cax) 
  
% annotate spokes in degrees 
    rt = 1.1*(rmax-rmin); 
    for i = 1:length(th)   
        text(rt*cst(i),rt*snt(i),int2str(i*30),... 
             'horizontalalignment','center',... 
             'handlevisibility','off','parent',cax); 
        if i == length(th) 
            loc = int2str(0); 
        else 
            loc = int2str(180+i*30); 
        end 
        if i ~= length(th)  %DT: This statement eliminates the label at 
0 degrees 
             text(-rt*cst(i),-
rt*snt(i),loc,'horizontalalignment','center',... 
             'handlevisibility','off','parent',cax) 
        end 
    end 
  
% set view to 2-D 
    view(cax,2); 
% set axis limits 
    axis(cax,(rmax-rmin)*[-1 1 -1.15 1.15]); 
     
    setappdata( cax, 'rMin', rmin ); 
     
else 
    %Try to find the inner radius of the current axis. 
    if ( isappdata ( cax, 'rMin' ) ) 
        rmin = getappdata( cax, 'rMin' ); 
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    else 
        rmin = 0; 
    end 
end 
  
% Reset defaults. 
set(cax, 'DefaultTextFontAngle', fAngle , ... 
    'DefaultTextFontName',   fName , ... 
    'DefaultTextFontSize',   fSize, ... 
    'DefaultTextFontWeight', fWeight, ... 
    'DefaultTextUnits',fUnits ); 
  
% transform data to Cartesian coordinates. 
xx = (rho - rmin).*cos(theta); 
yy = (rho - rmin).*sin(theta); 
  
% plot data on top of grid 
if strcmp(line_style,'auto') 
    q = plot(xx,yy,'parent',cax); 
else 
    q = plot(xx,yy,line_style,'parent',cax); 
end 
  
if nargout == 1 
    hpol = q; 
end 
  
if ~hold_state 
    set(cax,'dataaspectratio',[1 1 1]), axis(cax,'off'); 
set(cax,'NextPlot',next); 
end 
set(get(cax,'xlabel'),'visible','on') 
set(get(cax,'ylabel'),'visible','on') 
  
if ~isempty(q) && ~isdeployed 
    
makemcode('RegisterHandle',cax,'IgnoreHandle',q,'FunctionName','polar')
; 
end 
 
Function signalExpectation3: 
 
function [B steerAngles] = signalExpectation3(N,angleSource,sensorType) 
%% Function signalExpectation2 
%  This function provides input and output for functions that provide 
the  
%  expected beampattern for one signal.  The functions called include: 
%     a) equation2131e: simulates pressure sensors using Van Trees 
equation 2.131. 
%     b) cardioidBeamPatt1: simulates cardioid sensors 
%     c) cardynullBeamPatt1: simulates cardynull sensors 
%  The output is the beampattern for an array steered around 360 
degrees. 
%  This program provides the output expected for a Signal located at 
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%  the angle specified in thetaSource.  The results can be used for 
%  comparison with more complicated beamforming routines. 
%  
%% Variables: 
%      steerAngles =  Steering angles (deg) 
%   Inputs: 
%      N           =  Number of (pressure only) sensors in the linear 
array 
%      angleSource =  Source angle (deg) 
%   Outputs: 
%      B           =  Beampattern (dB) 
%      steerAngles  =  An array of steering angles (deg) 
%% 
if strcmp(sensorType,'pressure') 
  steerAngles = 0:0.25:359.75; 
  B = equation2131e(N,angleSource,steerAngles); 
end 
if strcmp(sensorType,'cardioid') 
  [B steerAngles] = cardioidBeamPatt2(N,angleSource,0);  
                                        % 0 assumes signal in z = 0 
plane 
end 
if strcmp(sensorType,'cardynull') 
    [B steerAngles] = cardynullBeamPatt2(N,angleSource,0);  
                                        % 0 assumes signal in z = 0 
plane 
End 
 
Function noiseExpection1: 
 
function [Bsum thetaSteer] = noiseExpectation1(N) 
%% Function noiseExpectation1 
%  This program provides a composite plot by calling  
%  the function equation2131e for each source angle (0:0.25:359.75) and 
%  summing the result.  The resulting beam pattern is what we would 
%expect if noise was coming from all directions. 
%  The results can be used for comparison with more complicated 
%beamforming routines. 
%% Variables: 
%   Inputs: 
%      N           =  Number of (pressure only) sensors in the linear 
array 
%   Outputs: 
%      B           =  Beampattern (dB) 
%      thetaSteer  =  An array of steering angles (deg) 
%% 
thetaSteer = 0:0.25:359.75; 
Bsum = zeros(1,length(thetaSteer)); 
for thetaSource = 0:0.25:359.75; 
   Bsum = Bsum+equation2131e(N,thetaSource,thetaSteer); 
End 
 
Function aboveThreshold2: 
 
function [hypoPos hypoPosPlot] = aboveThreshold2(RL,detectThresh) 
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hypoPos = zeros(1,length(RL)); 
hypoPosPlot = hypoPos; 
for m = 1:length(RL) 
    if RL(m) >= detectThresh 
        hypoPos(m) = 1; 
        hypoPosPlot(m) = RL(m); 
    else 
       %hypoPos(m) already equals 0; 
       %hypoPosPlot(m) already equals 0; 
    end 
end 
 
Function edgeDetect3: 
 
function [leftEdges rightEdges] = edgeDetect3(hypoPos) 
nl = 1; 
nr = 1; 
% for the majority of the array 
for m = 1:length(hypoPos)-1 
  if hypoPos(m)==0 && hypoPos(m+1)==1 
    leftEdges(nl) = m+1; 
    nl = nl+1; 
  end 
  if hypoPos(m)==1 && hypoPos(m+1)==0 
    rightEdges(nr) = m; 
    nr = nr+1; 
  end 
end 
% for the ends of the array 
if hypoPos(length(hypoPos))==0 && hypoPos(1)==1 
    leftEdges(nl) = 1; 
end 
if hypoPos(length(hypoPos))==1 && hypoPos(1)==0 
    rightEdges(nr) = length(hypoPos); 
end 
if nl == 1   % if the left edge still hasn't been defined 
    leftEdges(nl) = 0;  % assign zero  
end 
if nr == 1   % if the right edge still hasn't been defined 
    rightEdges(nr) = 0; % assign zero 
end 
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Function detectRegion1: 

 
function detectPairs = detectRegion1(leftEdges,rightEdges,hypoPosPlot) 
% This function simply creates a matrix that contains the indices of 
%the left side and the right side of each detection region. 
detectPairs = zeros(length(leftEdges),2); 
 for n = 1:length(leftEdges)   % for each left edge 
  m = leftEdges(n);           % use the index of the left edge 
  small = length(hypoPosPlot); 
  for k = 1:length(rightEdges)% and find the index of the next right 
edge 
     if rightEdges(k) >= leftEdges(n) 
       if rightEdges(k)-leftEdges(n) <= small 
         mm = rightEdges(k); 
         small = rightEdges(k)-leftEdges(n); 
       end 
     end 
  end 
  if leftEdges(n) > max(rightEdges)  %Special case when beam strattles 
zero degrees 
     mm = min(rightEdges); 
  end 
 detectPairs(n,1) = m; 
 detectPairs(n,2) = mm; 
 end 
end 
 
Function slopeDetermine1: 
 
function slopeSign = slopeDetermine1(detectPairs,hypoPosPlot) 
M = length(detectPairs(:,2)); 
index = 1; 
slopeSign = NaN(1,360); 
for m = 1:M 
  kl = detectPairs(m,1); 
  kr = kl+1; 
  if  detectPairs(m,1) <= detectPairs(m,2) % Majority case 
    difference = detectPairs(m,2)-detectPairs(m,1); 
    for nn = 1:difference 
      while kl <= detectPairs(m,2)                 % Define slope signs 
        if kr > length(hypoPosPlot) 
          kr = 1; 
        end 
        if kl > length(hypoPosPlot) 
          kl = 1; 
        end 
        slopeSign(kl) = sign(hypoPosPlot(kr)-hypoPosPlot(kl));  
        kl = kl+1; 
        kr = kr+1; 
      end 
    end 
  end 
  if detectPairs(m,1) > detectPairs(m,2)        %Special case when beam  
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    mmm = detectPairs(m,2) + length(hypoPosPlot);  %strattles zero 
%degrees 
    difference = mmm - detectPairs(m,1); 
    for nn = 1:difference 
      while index < mmm                       
        if kr > length(hypoPosPlot) 
           kr = 1; 
        end 
        if kl > length(hypoPosPlot) 
          kl = 1; 
        end 
        slopeSign(kl) = sign(hypoPosPlot(kr)-hypoPosPlot(kl)); %Define  
        index = index+1;                                       %slope                  
%signs 
        kl = kl+1; 
        kr = kr+1; 
      end 
    end 
  end 
end 
%figure; plot(1:360,slopeSign,'b-'); axis([0 360 -1.2 1.2]); 
End 
 
Function locationMax2: 
 
function maxIndices = locationMax2(detectPairs,slopeSign,hypoPosPlot) 
%This function finds the approximate location of each maximum and 
outputs  
%the index for this location.  It does this for all maximums(0:359 
degrees). 
if length(slopeSign) ~= length(hypoPosPlot) 
  'warning: the variables slopeSign and hypoPosPlot do not have the 
same length' 
end 
M = length(detectPairs(:,2)); 
ki = 1; 
for m = 1:M                 % for each detection region 
  if detectPairs(m,1) < detectPairs(m,2) 
    difference = detectPairs(m,2)-detectPairs(m,1); 
  else 
    if detectPairs(m,1) > detectPairs(m,2) 
      difference = 360+detectPairs(m,2)-detectPairs(m,1); 
    else 
      difference = 0; 
      maxIndices(ki) = detectPairs(m,1); 
      ki =ki+1; 
    end 
  end 
  kl = detectPairs(m,1); 
  kr = kl+1; 
  for mm = 1:difference 
    if kr > length(slopeSign) 
      kr = 1; 
    end 
    if kl > length(slopeSign) 
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      kl = 1; 
    end 
    if slopeSign(kl)==1 && slopeSign(kr)==-1       % a maximum is near 
%here 
      ks = kr; 
      maxIndices(ki) = ks; 
      ki =ki+1; 
    end 
    if detectPairs(m,2)-detectPairs(m,1) == 1      % a maximum is near 
%here 
      ks = kl; 
      maxIndices(ki) = ks; 
      ki =ki+1; 
    end 
    if slopeSign(detectPairs(m,1)) == -1           % a maximum is near 
%here 
      ks = kl; 
      maxIndices(ki) = ks; 
      ki =ki+1; 
    end    
    kl = kl+1; 
    kr = kr+1; 
  end 
end 
 
Function sonarBlip4: 
 
function [trueBlip falseBlip] = 
sonarBlip4(locationIndex,phiSignal,phiSteer,SAR,tol,sensorType,table) 
% First determine the index for the angle where phiSignal and phiSteer 
% are the same. 
M = length(phiSteer); 
if strcmp(sensorType,'cardioid') 
  for m = 1:M 
    if phiSteer(m) == phiSignal 
        mm = m; 
    end 
  end 
  % Now 'mm' is the index at which phiSteer(mm) is equal to phiSignal. 
  % In other words, 'mm' is the index that gives the response where the 
  % signal is located. 
end 
if strcmp(sensorType,'pressure') 
  if SAR ~= 1 
    'warning: sonarBlip4 assumes SAR = 1 for pressure-only arrays' 
  end 
  for m = 1:M 
    if phiSteer(m) == phiSignal 
        mm = m; 
        if mm==1 
          mmm = 1; 
        else 
          mmm = 362 - mm; 
        end 
    end 
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  end 
  % Now 'mm' is the index at which phiSteer(mm) is equal to phiSignal. 
  % In other words, 'mm' is the index that gives the response where the 
  % signal is located. 
end 
if strcmp(sensorType,'cardynull') 
  if SAR ~= 1 
    'warning: sonarBlip4 assumes SAR = 1 for cardynull processor' 
  end 
  for m = 1:360 
     if table(m,1) == phiSignal 
        mm = table(m,2)+1; 
     end 
  end 
end 
    % For cardynull processing 'mm' is index where the maximum response 
%is expected.  Since the cardynull is nonlinear the peak response is  
    % closer to broadside than the actual signal location.   
   
% The location of each contact is given by locationIndex.   
% Create a new arrays with the location of each true/false contact. 
trueBlip = NaN(1,M); 
falseBlip = NaN(1,M); 
% tol = angle tolerance (degrees) {for determining if true target} 
% SAR = steering angle resolution (degrees)   
for n = 1:length(locationIndex) 
  if(locationIndex(n)>=mm-
round(tol/SAR))&&(locationIndex(n)<=mm+round(tol/SAR)) 
      trueBlip(locationIndex(n)) = 1; 
  else 
    if strcmp(sensorType,'pressure') && ... 
      (locationIndex(n)>=mmm-
round(tol/SAR))&&(locationIndex(n)<=mmm+round(tol/SAR)) 
         trueBlip(locationIndex(n)) = 1; 
    else 
         falseBlip(locationIndex(n)) = 1;   
    end 
  end 
end 
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APPENDIX D.  LEVEL 3 FUNCTIONS 

Function calculateWavenumberSteering4: 
function k = calculateWavenumberSteering4(lambda,theta,phi) 
% This function computes the wavenumber vector given lambda and  
% the angles (theta,phi). 
% k = omega/c = 2*pi*f/c = 2*pi/lambda 
% Note: since the wavelength, lambda, has units of mm, k has units of 
%1/mm. 
K = 2*pi/lambda; 
k = zeros(1,3); 
k(1,1) = K*cos(phi); 
k(1,2) = K*cos(theta)*sin(phi); 
k(1,3) = K*sin(theta)*sin(phi); 
% The following section to eliminate small residual values for  
% cos(pi/2), etc. 
eps = 1E-6; 
for m = 1:3 
    if abs(k(1,m)) <= eps 
         k(1,m) = 0; 
    end 
end 

Function defineWeightingFactorsPress1: 
function w = defineWeightingFactorsPress1(N,A) 
%wh=hann(N);             % Weighting factors (Hanning) 
wu=1/N*ones(N,1);        % Weighting factors (Uniform) 
wx=zeros(N,1); 
wy=zeros(N,1); 
wz=zeros(N,1); 
wp=wu*A; 
w=[wx wy wz wp]; 
% The following section eliminates small residual values for  
% cos(pi/2), etc. 
eps = 1E-15; 
for m = 1:4 
    if abs(w(:,m)) <= eps 
         w(:,m) = 0; 
    end 
end 

Function defineWeightingFactors3: 
function w = defineWeightingFactors3(N,A,thetaS,phiS) 
%wh=hann(N);             % Weighting factors (Hanning) 
wu=1/N*ones(N,1);        % Weighting factors (Uniform) 
wx=wu*cos(phiS); 
wy=wu*cos(thetaS)*sin(phiS); 
wz=wu*sin(thetaS)*sin(phiS); 
wp=wu*A; 
w=[wx wy wz wp]; 
% The following section eliminates small residual values for  
% cos(pi/2), etc. 
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eps = 1E-15; 
for m = 1:4 
    if abs(w(:,m)) <= eps 
         w(:,m) = 0; 
    end 
end 

Function calculateA: 
function A = calculateA(phiS) 
A = -cos(2*phiS); 

Function combineSensors1: 
function beamSum  = combineSensors1(N,b1,b2,nSteeringAngles)  
% This function combines the output of each vector sensor to get  
% the total beam. 
bA = zeros(1,nSteeringAngles); 
bB = zeros(1,nSteeringAngles); 
for n=1:N  % Accumulate the contribution of each sensor 
    bA(1,:) = bA(1,:) + b1(n,:); 
    bB(1,:) = bB(1,:) + b2(n,:); 
end 
beamSum = abs(bA).*abs(bB); 
if N == 1 
    beamSum = beamSum.^2; 
end 

Function equation2131e: 
function B = equation2131e(N,thetaSource,thetaSteer) 
% This function completes the calculation of equation 2.131 of  
%vanTrees. 
% The output is in power or intensity units (i.e. the square of the 
% result of the equation). 
% 
% Inputs: 
%      N =        Number of (pressure-only) sensors in the linear array 
%      thetaSource =  Source angle (deg) 
%      thetaSteer  =  Steering angle (deg) 
% 
dol = 0.5;                % d over lamdba 
    B= 1/N.*... 
      (sin(pi*N*dol*(cos(thetaSource*pi/180)-
cos(thetaSteer*pi/180))))./... 
      (sin(pi*dol*(cos(thetaSource*pi/180)-cos(thetaSteer*pi/180)))); 
% Since the previous statement evaluates to 0/0 when the source and  
% steering angle are equal, the following conditional statement was 
%added. 
for n = 1:length(thetaSteer) 
    if (cos(thetaSource*pi/180)-cos(thetaSteer(n)*pi/180)) == 0  
        B(n) = 1; 
    end 
end 
B=B.^2; 
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Function cardioidBeamPatt2: 
function [B phi] = cardioidBeamPatt2(N,phiSource,thetaSource) 
% This function is based on the equations provided in the program  
% "beampatterns" by K.B. Smith. 
% It provides the beampattern for an array of vector sensors. 
  
m=(1:N);  % N is # of array elements 
  
S1=1; S2=0; S3=0;  % Relative signal receive level of 3 signals 
phi1=phiSource*pi/180; phi2=0*pi/180; phi3=0*pi/180;   % Angle relative 
to end-fire of 3 signals 
  
theta1=thetaSource*pi/180; theta2=0*pi/180; theta3=0*pi/180;  % 
Relative phase (radians) of 3 signals 
  
theta=0; phi=(0:359)*pi/180;  % Steering angles 
  
press=zeros(N,length(phi)); card=press; dynnull=press; 
  
for el=1:N, 
    phs1=i*pi*(el-1)*cos(phi1); phs2=i*pi*(el-1)*cos(phi2); 
phs3=i*pi*(el-1)*cos(phi3);  % Plane wave phases of 3 signals at array 
elements locations 
    A=1; B=1; C=1; D=1;  % Equal weighting scheme (Cardioid) 
    press(el,:)=S1*exp(phs1);  % Processing on pressure signal only 
    
card(el,:)=A*(S1*cos(phi1)*exp(phs1)+S2*cos(phi2)*exp(phs2)+S3*cos(phi3
)*exp(phs3))*cos(phi)+... 
        
B*(S1*cos(theta1)*sin(phi1)*exp(phs1)+S2*cos(theta2)*sin(phi2)*exp(phs2
)+S3*cos(theta3)*sin(phi3)*exp(phs3))*cos(theta)*sin(phi)+... 
        
C*(S1*sin(theta1)*sin(phi1)*exp(phs1)+S2*sin(theta2)*sin(phi2)*exp(phs2
)+S3*sin(theta3)*sin(phi3)*exp(phs3))*sin(theta)*sin(phi)+... 
        D*(S1*exp(phs1)+S2*exp(phs2)+S3*exp(phs3))*cos(0*phi);  % 
Processing on vector signals using cardioid weighting 
    Ddyn=-cos(2*phi);  % Weighting scheme for Dynamic Null steering 
    
dynnull(el,:)=A*(S1*cos(phi1)*exp(phs1)+S2*cos(phi2)*exp(phs2)+S3*cos(p
hi3)*exp(phs3))*cos(phi)+... 
        
B*(S1*cos(theta1)*sin(phi1)*exp(phs1)+S2*cos(theta2)*sin(phi2)*exp(phs2
)+S3*cos(theta3)*sin(phi3)*exp(phs3))*cos(theta)*sin(phi)+... 
        
C*(S1*sin(theta1)*sin(phi1)*exp(phs1)+S2*sin(theta2)*sin(phi2)*exp(phs2
)+S3*sin(theta3)*sin(phi3)*exp(phs3))*sin(theta)*sin(phi)+... 
        Ddyn.*(S1*exp(phs1)+S2*exp(phs2)+S3*exp(phs3)).*cos(0*phi);  % 
Processing on vector signals using dynamic null weighting 
  
end 
  
bpress=zeros(length(phi),1); bcard=bpress; bdynnull=bpress; 
for n=1:length(phi), 
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    rep=exp(i*pi*cos(phi(n)).*(m-1));  % Plane wave phase replica 
across array elements 
  
    tmp=xcorr(press(:,n),rep); 
    bpress(n)=abs(tmp(max(2,N))); 
     
    tmp=xcorr(card(:,n),rep); 
    bcard(n)=abs(tmp(max(2,N))); 
     
    tmp=xcorr(dynnull(:,n),rep); 
    bdynnull(n)=abs(tmp(max(2,N))); 
end 
B = bcard; 
B = B.^2; 
B = B'; 
 

Function cardynullBeamPatt2: 
function [B phi] = cardynullBeamPatt2(N,phiSource,thetaSource) 
% This function is based on the equations provided in the program  
% "beampatterns" by K.B. Smith. 
% It provides the beampattern for cardynull processing of an array of  
% vector sensors. 
  
m=(1:N);  % N is # of array elements 
  
S1=1; S2=0; S3=0;  % Relative signal receive level of 3 signals 
phi1=phiSource*pi/180; phi2=0*pi/180; phi3=0*pi/180;   % Angle relative 
to end-fire of 3 signals 
  
theta1=thetaSource*pi/180; theta2=0*pi/180; theta3=0*pi/180;  % 
%Relative phase (radians) of 3 signals 
  
theta=0; phi=(0:359)*pi/180;  % Steering angles 
  
press=zeros(N,length(phi)); card=press; dynnull=press; 
  
for el=1:N, 
    phs1=i*pi*(el-1)*cos(phi1); phs2=i*pi*(el-1)*cos(phi2); 
phs3=i*pi*(el-1)*cos(phi3);  % Plane wave phases of 3 signals at array 
%elements locations 
    A=1; B=1; C=1; D=1;  % Equal weighting scheme (Cardioid) 
    press(el,:)=S1*exp(phs1);  % Processing on pressure signal only 
    
card(el,:)=A*(S1*cos(phi1)*exp(phs1)+S2*cos(phi2)*exp(phs2)+S3*cos(phi3
)*exp(phs3))*cos(phi)+... 
        
B*(S1*cos(theta1)*sin(phi1)*exp(phs1)+S2*cos(theta2)*sin(phi2)*exp(phs2
)+S3*cos(theta3)*sin(phi3)*exp(phs3))*cos(theta)*sin(phi)+... 
        
C*(S1*sin(theta1)*sin(phi1)*exp(phs1)+S2*sin(theta2)*sin(phi2)*exp(phs2
)+S3*sin(theta3)*sin(phi3)*exp(phs3))*sin(theta)*sin(phi)+... 
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        D*(S1*exp(phs1)+S2*exp(phs2)+S3*exp(phs3))*cos(0*phi);  % 
%Processing on vector signals using cardioid weighting 
    Ddyn=-cos(2*phi);  % Weighting scheme for Dynamic Null steering 
    
dynnull(el,:)=A*(S1*cos(phi1)*exp(phs1)+S2*cos(phi2)*exp(phs2)+S3*cos(p
hi3)*exp(phs3))*cos(phi)+... 
        
B*(S1*cos(theta1)*sin(phi1)*exp(phs1)+S2*cos(theta2)*sin(phi2)*exp(phs2
)+S3*cos(theta3)*sin(phi3)*exp(phs3))*cos(theta)*sin(phi)+... 
        
C*(S1*sin(theta1)*sin(phi1)*exp(phs1)+S2*sin(theta2)*sin(phi2)*exp(phs2
)+S3*sin(theta3)*sin(phi3)*exp(phs3))*sin(theta)*sin(phi)+... 
        Ddyn.*(S1*exp(phs1)+S2*exp(phs2)+S3*exp(phs3)).*cos(0*phi);  % 
%Processing on vector signals using dynamic null weighting 
  
end 
  
bpress=zeros(length(phi),1); bcard=bpress; bdynnull=bpress; 
for n=1:length(phi), 
    rep=exp(i*pi*cos(phi(n)).*(m-1));  % Plane wave phase replica 
%across array elements 
  
    tmp=xcorr(press(:,n),rep); 
    bpress(n)=abs(tmp(max(2,N))); 
     
    tmp=xcorr(card(:,n),rep); 
    bcard(n)=abs(tmp(max(2,N))); 
     
    tmp=xcorr(dynnull(:,n),rep); 
    bdynnull(n)=abs(tmp(max(2,N))); 
end 
B = bcard.*bdynnull; 
B = B'; 
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APPENDIX E.  PROGRAM AND FUNCTION TO DETERMINE 
LOCATION OF CARDYNULL MAXIMUM RESPONSE (MATLAB) 

%% Program cardynullTablemaker 
% For a Cardynull processor, this program calculates the angle of the 
% maximum (peak) response for all signal angles. 
% The results are provided in a table (called 'TABLE') that lists the 
% signal angle and the corresponding peak response (to the nearest 1 
%deg.) 
% for line arrays with 2-150 sensors.  The results are stored in 
% 'cardTable' which can be loaded whenever the peak response for the 
% nonlinear Cardynull processor is needed. 
% Caution: Peak responses are not accurate near endfire (i.e. for 351-9 
% degrees and for 171-189 degrees). 
  
TABLE = zeros(360,150); 
for N = 2:150 
  table = cardynullTablemakerFunc2(N); 
  if N == 2 
    TABLE(:,1) = table(:,1); 
  end 
  TABLE(:,N) = table(:,2); 
end 
save cardTable TABLE 
 
%% cardynullTablemakerFunc2 
% For a Cardynull processor, this function calculates the angle of the 
% maximum (peak) response for all signal angles. 
% The results are provided in a table that lists the signal angle and 
%the corresponding peak response (to the nearest 1 degree). 
function table = cardynullTablemakerFunc1(N) 
  sensorType = 'cardynull'; 
  angSig = (0:359)'; 
  angMaxResponse = angSig; 
  for m = 11:171 
    phiSigDeg = m-1; 
    [B2 ~] = signalExpectation3(N,phiSigDeg,sensorType); 
    Bdb2=plotScaling5(B2); 
    maxBdb2 = max(Bdb2); 
    for n = 0:359 
      if Bdb2(n+1) == maxBdb2 
        angMaxResponse(m) = n; 
      end 
    end 
  end 
  n=11; 
  for m = 351:-1:191 
    angMaxResponse(m) = 360-angMaxResponse(n); 
    n=n+1; 
  end 
  table = [angSig angMaxResponse]; 
end 
% Note: for signal angles near endfire (i.e. for angles (351 - 9) and  
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% (171 -189).  The maximum response angle (angMaxResponse) is set to 
%equal to the signal angle (angSig); in other words: table(m,1) = 
%table(m,2)  
% near endfire.  It is anticipated that studies will be completed  
% between 10-170 degrees and 190-350 degrees for the Cardynull 
%processor  
% since directing the null in the ambiguous direction would cause 
%problems 
% when the ambiguous direction approaches the signal direction (i.e. 
near 
% endfire). 
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